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Experimental monthly long-range forecasts for the United Kingdom
Part II. A real-time long-range forecast by an ensemble of numerical integrations

By J.M. Murphy and T.N. Palmer*
(Meteorological Office, Bracknell)

Summary

The use of an ensemble of integrations for long-range prediction has been studied with a hemispheric version of the
Meteorological Office 5-level general circulation model. Some results, showing the potential of the technique, are described. The
method is now being used with the global 11-level model to produce real-time long-range forecasts for the long-range forecasting
conference in the Synoptic Climatology Branch of the Meteorological Office. Results from the first of these real-time ensemble
forecasts are discussed.

1. Introduction

The short-range predictive skill of numerical weather prediction (NWP) models has steadily
improved over the years. Despite this, attempts to use such models to forecast the instantaneous state of
the atmosphere a month into the future have not enjoyed much success. The fundamental reasons for
this lie not only with deficiencies in the numerical models, but also with the very equations of motion
which the models integrate.

Specifically, the difference between two or more integrations of an NWP model whose initial states
differ by a small amount (representing, say, analysis error) will increase with time until at some stage the
integrations are completely independent of one another, in the sense that they can be thought of as
random states in some climatological distribution. This suggests that the atmosphere has some ‘limit of
deterministic predictability’ and attempts to estimate this (e.g. Lorenz 1982, Mansfield 1986) suggest
that, on average, it is considerably less than |1 month. This limit can be extended by considering the
model’s forecast of only the planetary-scale modes and/ or time-averaged fields (Shukla 1981), though
this approach ignores a fundamental problem that forecasting on the monthly time-scale has a marked
probabilistic element, and is not strictly deterministic. The multivariate statistical model (Maryon and
Storey 1985, Folland and Woodcock 1986), the backbone of the operational long-range forecasting
system in the Meteorological Office, has this notion built into its basic formulation; it does not predict
one pattern of surface pressure, but assigns probabilities to a number of pre-defined patterns.

* Now on secondment to the European Centre for Medium Range Weather Forecasts, Shinfield Park, Reading.
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Hurricane-Superstorm Sandy : Predictable
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Hurricane Nadine: Unpredictable
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Electricity Production vs Windspeed

windpower [% of maximum production]
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Ensemble Prediction for Decision Making

U (x))= Jueapeaaxzuf(x)
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. SENS

Minimum 1.24
Maximum 6.91
Mean 3.01
Median 2.87
Std Dev 0.866
Skewness 0.7393

10% 2.00
25% 2.35
75% 3.53
90% 4.21

Values 100000



Cost of mitigation = $ 150 trillion

Based on the most likely climate change only:
Expected damage/ impacts = $ 150 trillion

Based on the probabillity distribution of possible

climate change:
Expected damage/ impacts = $ 314 trillion

Chris Hope, U. Cambridge



Reliability of ECMWF Ensemble Prediction System
50 members, T639 ( c. 30km) resolution
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Beyond the
medium range,
precipitation
forecasts start
to loose
reliability.

This is also a
problem for
short-range
prediction of
extreme
precipitation
events

ECMWF Monthly Forecast, Precip in upper tercile , Area:Europe
Day 12-18 20041007-20120705
BrSc = 0.229 LCBrSkSc=-0.01 Uncertainty= 0.227
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ECMWF Monthly Forecast, Precip in upper tercile |, Area:Europe
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How Can We Improve our Forecasts?

e More and Better Observations. Better ways to
Assimilate Observations into models

 Higher resolution models, improved
parametrisations

e Better representations of the inherent uncertainty
in the observations and the models.



Traditional computational ansatz for weather/climate
simulators
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Eg momentum“transport” by: Deterministic local

bulk-formula
parametrisation

Turbulent eddies in
boundary layer

Orographic gravity wave
drag.

Convective clouds




Deterministic bulk-formula parametrisation is
based on the notion of averaging over some
putative ensemble of sub-grid processesin

guasi-equilibrium with the resolved flow (eg

Arakawa and Schubert, 1974)
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Stochastic Parametrisation

More consistent with power-law behaviour

Describes the sub-grid tendency in terms of a pdf
constrained by the resolved-scale flow.

Provides stochastic realisations of the sub-grid flow, not
some putative bulk average effect.

Can incorporate physical processes (eg energy backscatter)
not easily described in conventional parametrisations.

Parametrisation devel opment can be informed by coarse-
graining budget analyses of very high resolution (eg cloud
resolving) models.




Experiments with the Lorenz ‘96 System
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Palmer, 1997, 2001: Buizza et al, 1999....

Qarterdy Josrnal af the Reayval Meteomdogical Saciety € | R Metearel Sor. (3012}

Towards the probabilistic Earth-system simulator: a vision for
the future of climate and weather prediction”

T.N. Palmer*®*
*Atmespheric, ooanic and Planetary Physics, University of Orford, U
*Eurgpean Centre for Meditm. Range Wether Forenmts, Reading, L'K
*Correspandence to: 7. N. Palmer, Atmospheric, Oceanic and Planetary Physics, Parks Road, Oxford 0X1 3PU.
Emadl: tn_palmer@atm ar.acuk
" Based am the 201 | Royal Meteorological Society Presidential Address.

There is no more challenging problem in | science than that of
estimating, as accurately as science and technology allows, the future evolution of
Earth’s climsate; nor indeed is there a problem whose solution has such importance
and urgency. Historically, the simulation toels needed to predict dimate have
been developed, somewhat independently, at a nmnber af wsﬂm and climate
institutes around the world. While these si
it is often assumed that the resulting dwusal)' prcmdu a mscful quantification
of uncertainty in gbnba] o regional predictions. Hnwrm'. this notion is not well
founded th i ding ‘multi Lator’ estimates of i
can be prone to qﬂstemx failure. Separste to this, individual institutes are now
facing considerable challenges in finding the humsan and computational resources
needed 1o develop more accurate weather and climate simulators with higher
and full Earth ity, A umappmmdl.ongmmydmmed o
improve reliability in ble-based numerical weather
to help solve these two rat.herd]ﬁemnt problems, Using sladmu: maﬂ!ﬂmtlca.
this approach explicitly in the
of unresolved dimatic Processcs. Stochastic parametrization is shown to be more
with the underd: fons of motion and, moreover, provides more
skilful estimates of uunm.mnty when compared with estimates from traditional
li-simulat bles, on t des where verification data exist. Stochastic
parametrization can also help reduce long-term biases which have bedevilled
numerical simulations of climate from the earliest days to the present. As a result,
it s suggested that the need to maintain a large ‘gene pool of quasi-independent
deterministic simulators may be cbviated by the development of probabilistic
Earth-system simulators. Consistent with the conclusions of the World Summit on
Climate Modeling, this in turn implies that u:d.wu!nﬂ institutes will be able to pool
]llu:m.u and o resources in
st i ofthe Airbu:
pvadcs & useful analogy here. As a funher stimulus for such evolution, discussion
is given to a potentizl new synergy between the development of dynamical cores,
and stochastic processing hardware. However, it is concluded that the traditional
challenge in numerical weather prediction, of reducing deﬂ:rmunmc measures of

ﬂDt‘cl:m cirar, mr chrnsmg]y obstacle to th d of

doxical asthat may appear at first
sight. Indeed, going further, it is arg\md that it may be time to consider focusing
operational weather forecast d entirely on high- fion ensemble
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Stochastic Parametrization and
Model Uncertainty

Palmer, T.N., R. Buizza, F. Doblas-Reyes,
T. Jung, M. Leutbecher, G.J. Shuitts,
M. Steinheimer, A. Weisheimer

Research Department

October 8, 2009

European Cenire for Medium-Range Weather Forecasts
Européisches Zenfrum fir mittelfristige Wettervorhersage

Centre eurcpéen pour les prévisions méiéeralogiques & moyen terme




Brier Skill Score: ENSEMBLES MME vs ECMWEF

stochastic physics ensemble (SPE)

lead time: 1 month

T2m

precip
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Nov

May

Nov

cold
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cold

warm

dry

wet

dry

wet

MME

0.178

0.195

0.141

0.159

0.085

0.079

0.080

0.099

SPE

0.194

0.192

0.149

0.172

0.104

0.118

0.095

0.114

CTRL

0.147

0.148

0.126

0.148

0.044

0.061

0.058

0.075

Hindcast period: 1991-2005
SP version 1055m007

Weisheimer et al GRL (2011)




Vorticity
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Impact of uncertainties
in the horizontal density gradient
upon low resolution global ocean moedelling

Jean-Michel Brankart®
LEGI/CNRS, Grenoble, France

September 12, 212

Abstract

In this study, it s shown (i} that, a8 8 penlt of the ooolinescity of the seawater eguation
of atate, anreslved senls represent & major sousee’ of aecertaintien jo the computation
of the Iarge-scale boripantu] density gradient foom the nrge-scale temperature and sabinity
felels, nmd {if) thnt the effect of these uncertainties mn be simninted wing rundem processe:
1o repn=ent geresnlvesd tempernture and salinity fuctustions. The results of experiments
pesfarmed with o kw pescdution global ocean madel show thet this porametesizntion has o
constderabhe efect o the iverage Inngeeacnd: circulation of the octan, eepecialiy i the pegions
of interse mesasealy netivity, The lurge-soale Sow &5 bes geostrophic, with more ndense
asmocinted verticn! velosties, and the averge grographics] position of the mnin tempernture
arxl galinity fromie & mon: congistent with otsermtions, In particalsr, the simulat iors suggoest
that the stochnstic effect of the unresclbvesd temperubuze nod salicity Bectuntions oo the Inspe-
senle density field may be sufficient 4o epinin why the Gulf Stream patheay sedamnzicndly
overshoods in nonestochastic Jow sesohstion scenn models,

1 Introduction

O ol the mest aalient feature of today’s state-of-the-ar ocean models 8 that they are esgen-
tinlly defermmistic models, in the serse that they do not lovelve random numbers Lo represent
wnceriaizties in the model eguations, parameters and foreing, or to simulate the effect of wees-
solven] processes, Yat, this deterministic model dynsndes s known 1o beeoms chactie as scon
a5 eesmecale eddies are pesolved by the model, so that the stoulated mesoscale fow can only
be whewed ad ane random realization sampled from g loge set of possibilities. 1t B thus only
i a statistbeal sense that e mesoscnls can be compared to the real world, ard it s coly as
a stockastie process that the effect of the mesoscale in the model can be analysed. Mesoscals
Buctuaticns bedeed produce a considesable effcct on the genecal clrculation of the ooean [Ehal
et al., 2i04: Penduff et al. 3010), with preminent contributions te momentum, beat and salt
fuxes, which canpot be easily parameterieed bn low resolution medels,

As a gerseral rule, the effect of uncertainties or unresolved processes (even i unbinsed ) does
ot average to zero inoe nonlinear model For instarce, IF the wind = Aueteatiog o i it b8
wncertabn, then neglecting the Quetuations or the uncertabities systematbeally underestimates
the air-sen momenium fux (progoriional to the sguase of the wind speed). In the same way,
the avernge effecl of the mesoscale Quetuntions does pob vanish io the two noplinesr terms of
the primitive equatiors: the advection term and the equation of state. Coseerning advection

T Carrvapemding auior oddress: Jesn-Aichol Brankart, LEGI/CNRE, BPEEX, 380 1 Gresabln Cedex, France
Eamall: Sean-Michel Bnekaridibmg inpg. fr
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Flgnre & Mo sea surfaee Letght (ko). a8 obuadned 1) with the standasd ORCAZ conflguration
[top pureel), and (i) with the stochastic parameterization of the squation of state (middle panel).
The Bottom panel shows the diffsrence produced by the stochastic parameterkzation.



Effects of stochastic ice strength perturbation on

Arctic finite element sea ice modelling
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The ice strength parameter P* is a key
parameter in dynamic-thermodynamic sea ice
models. Controls the threshold for plastic
deformation. Value affected by the liquid
content in the sea ice. Cannot be measured
directly.

A stochastic representation of P* is developed
in a finite element sea-ice-ocean model,
based on AR1 multiplicative noise and spatial
autocorrelation between nodes of the finite
element grid

Despite symmetric perturbations, the
stochastic scheme leads to a substantial
increase in sea ice volume and mean
thickness

An ensemble of eight perturbed simulations
generates a spread in the multiyear ice
comparable with interannual variability in the
model.

Results cannot be reproduced by a simple
constant global modification to P*

d) e) f)
ooy = — Impact of different versions of
“ | ::_ \ l J ,: a2y | stochastic P* with respect to a
1 { ‘-“. i’t reference run. Top: Sea ice thickness.

,“ : | Pk I o f* I Bottom: sea ice concentration.



Spectral Dynamical Core
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Stochastic Parametrisation
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If parametrisation is partially stochastic, are we “over-engineering” our
dynamical cores by using double precision bit-reproducible computations
for wavenumbers near the truncation scale?

If we could relax the precision of the calculations near the truncation
scale, would this allow EPS system to progress to high (10km, 1km...)
resolution, reaping the benefits of high resolution, without the punitive
computational costs?



Superefficient inexact chips

http://news.rice.edu/2012/05/17/computing-experts-unveil-superefficient-inexact-chip/

& In terms of speed, energy

‘ ~ consumption and size,
inexact computer chips like
this prototype, are about 15
times more efficient than
today's microchips.

..............
..........

Krishna Palem.
Rice, NTU
Singapore

This comparison shows frames produced with V|deo processmg software on tradltlonal processing elements (left),
inexact processing hardware with a relative error of 0.54 percent (middle) and with a relative error of 7.58 percent
(right). The inexact chips are smaller, faster and consume less energy. The chip that produced the frame with the
most errors (right) is about 15 times more efficient in terms of speed, space and energy than the chip that
produced the pristine image (left).



Towards the Stochastic Dynamical Core?

Stochastic Parametrisation

Efficiency/speed/inexa
ctness of chip

Triangular [EE
Truncation

and precision at which
the data is stored and
passed between

- m=+M processors.

At Oxford we are beginning to work with IBM Zurich, Technical Uni
Singapore and U lllinois to develop these ideas...



Will bit-reproducible computation
continue to be a sine qua non in HPC?

In a recent presentation on Challenges in Application Scaling in an Exascale
Environment, IBM’s Chief Engineer for HPC, Don Grice, noted that:

“Increasingly there will be a tension between energy efficiency and error
detection”,

and asked whether :

“...there needs to be a new software construct which identifies critical
sections of code where the right answer must be produced” — implying that
outside these critical sections errors can (in some probabilistic sense) be
tolerated.

(http://www.ecmwf.int/ newsevents/meetings/workshops/2010/high
performance computing 14th/index.html)



EOF2

EOF2
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0
EOF1

Represent a;. by stochastic noise

a, = 2.33,—6.2a, —0.49a,a, —0.57a,a,
a, =—62-2.7a,+0.49a’ - 0.49a’ +0.14a,a,
a, = —0.633, —13a, + 0.43a,a, + 0.49a,a,

EOF1.
Integrate 3" equation on emulator

of stochastic chip. .
Peter Diiben



20 Years Ago

Dynamics Parametrisation

O(100km
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Now

Dynamics Parametrisation
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Edward Norton Lorenz (1917-2008)

| believe that the
ultimate climate
modeéls..will be
stochastic, 1e random
numbers will
appear somewherein
the time derivatives
Lorenz (1975).




