Post-processing methods for short-range ensemble forecasts

L.Descamps, C. Labadie

Météo-France DIRIC/PREVI

Météo-France CNRM/GMAP/RECYF

Key points of this presentation

- Comparison of various methods for statistical post-processing (SPP) of precipitation
 - What is the best technique ?
- The need for a reforecast data set
 - Can we do good job without reforecast data set ?
- Interest for 'rare' events
 - Can we improve probabilistic prediction or 'rare' events ?

Statistical post-processing of an operational E.P.S

Correcting deficiencies in estimating forecast errors

- Remove biases
- Increase reliability
- Preserve resolution
- based on learning of past forecast errors

Configuration of the study

- Use of Météo-France operational system PEARP
- SPP of 24-h rainfall amount over France
- one-month period : June 2010
- Use of a 21-year reforecast data set
 - and also a sliding window of 45 days using the most recent available forecasts
- Use of SAFRAN reanalysis as reference

PEARP 2010 configuration

- PEARP:Prévision d'Ensemble ARPEGE
- Initialization procedure
 - EDA + dry TE SVs
- Model characteristics
 - 35 4.5-Day forecasts run at T358c2.4 L65 resolution
 - using a set of 8 physical parametrization sets
- PEARP is runnig twice a day at 06 and 18 UTC
- Presentation of C. Labadie for details

Statistical post-processing of precipitation forecasts

- A lot of methods proposed in the literature
 - Rank Histogram-based correction
 - Non-homogeneous Gaussian regression
 - CDF-based correction
 - Analog
 - Logistic Regression
 - Bayesian model Averaging
 - **9** ...

Statistical post-processing of precipitation forecasts

- In this study
- Try first some simple methods
 - simple Bias correction
 - CDF-based correction

Statistical post-processing of precipitation forecasts

- In this study
- Try first some simple methods
 - simple Bias correction
 - CDF-based correction
- Try more sophisticated one
 - Rank-Analog
 - Logistic Regression
 - Bayesian model Averaging (ongoing work)

Reforecast data set

- 8-member ensemble reforecast
 - Each member uses a different set of parametrization
- Same resolution and forecast lead-time as PEARP
- Computed all four days from 01/05 to 28/07
 - 01/05, 05/05, ..., 24/07, 28/07
 - 23 days of a three-month period centered around June
- Computed over a 21-year period : 1989-2009
 - Initial condition from ERA-Int reanalysis
- Total of 8*21*23=3864 forecasts

SAFRAN precipitation reanalysis

- 24h Precipitation Amount 06UTC-06UTC
- Gauged-based analysis and reanalysis system
- Make use of all available information in reanalysis mode
- 8-km Lambert II coordinates grid covering France (9892 points)
- Used in the hydrometeorological operational system of Météo-France

- 0.25° gridded forecasts interpolated to the SAFRAN grid points
- A correction at each point of the SAFRAN grid
- 4 lead-times : 36, 60, 84 and 108h
- Each forecast is corrected depending on the set of parametrization it uses

- Simple Bias correction
 - Biases computed for 4 classes : P < 1mm,

1mm < P < 5mm, 5mm < P < 10mm, P > 10mm

- Simple Bias correction
- CDF-based correction
 - One CDF_F computed for each set of parametrization and each lead time

- Simple Bias correction
- CDF-based correction
- Rank-Analog
 - Use of 8 'ensemble mean' (mean of forecasts that use the same set of parametrization)
 - Searching area of 30 km
 - Use the dates with the smallest RMS rank difference

- Simple Bias correction
- CDF-based correction
- Rank-Analog
- Logistic regression
 - A unique predictor : cube root of the mean forecasted amount
 - Enlarge the training sample size with 5 'analog' data from locations that have similar climatologies (see Hamill et al. mwr 2008)

- Use of Brier Skill Score
- Use of Reliability and Resolution parts of BSS
- **5** thresholds : 0.2, 1, 5, 10 and 15mm
- 10000-member block bootstrap to quantify uncertainty in scores estimates

Results for BSS (the higher the better)

- Results for BSS (the higher the better)
- Simple Bias correction always has lower skill score than 'Raw' ensemble

- Results for BSS (the higher the better)
- BSS for P>0.2mm

Lead time (h)	36	60	84	108
Methods				
RAW	0.4	0.38	0.3	0.25
LOGIT	0.51	0.46	0.4	0.32
ANALOG	0.55	0.49	0.42	0.34
CDF	0.49	0.46	0.42	0.36

 Significant advantage against Raw ensemble for all methods

- Results for BSS (the higher the better)
- Same results for P>1mm and P>5mm

- Results for BSS (the higher the better)
- BSS for P>10mm

Lead time (h)	36	60	84	108
Methods				
RAW	0.22	0.17	0.1	0.15
LOGIT	0.28	0.23	0.17	0.15
ANALOG	0.28	0.2	0.15	0.16
CDF	0.26	0.2	0.14	0.18

 Significant advantage against Raw ensemble for all methods except at 108h lead time

- Results for BSS (the higher the better)
- Same results for BSS for P>15mm

- Summary of the results for the Reliability part of the BSS
- The three methods have a significant advantage against Raw ensemble except for 10 and 15mm thresholds at 84 et 108-h lead time

- Summary of the results for the Resolution part of the BSS
- The calibrated ensembles have better resolution than the Raw ensemble at early lead times for the lower thresholds

- Is there a technique that has better results than the others ?
- It depends on thresholds and Lead-time

- Is there a technique that has better results than the others ?
- It depends on thresholds and Lead-time
- Summary of the results
- Rank-Analog has higher scores at Early lead-times for 0.2 and 1mm thresholds
- Logistic-Regression approach has higher scores for higher thresholds

Can we do good job without a reforecast data set ?

- Can we do good job without a reforecast data set ?
- Logistic Regression and CDF-based approaches using forecasts from the most recently available 45 days of forecasts as training
 - Summary of the results
 - Better scores for 5, 10 and 15mm thresholds when using the reforecast

Can we improve probabilistic prediction of infrequent events ?

- Can we improve probabilistic prediction of infrequent events ?
- An exceptional high precipitation event over south-east of France on 15 June 2010
- More than 100 mm on Var region, more than 200 mm from St Tropez to Draguignan

- Can we improve probabilistic prediction of infrequent events ?
- Using the 36h-lead time 'raw' PEARP ensemble
- P(24h- Total Precipitation > 100mm)=0.02
- P(24h Total Precipitation > 75mm)=0.08
- P(24h Total Precipitation > 50mm)=0.27

- Can we improve probabilistic prediction of infrequent events ?
- Using the 36h-lead time 'raw' PEARP ensemble
- P(24h- Total Precipitation > 100mm)=0.02
- P(24h Total Precipitation > 75mm)=0.08
- P(24h Total Precipitation > 50mm)=0.27
- Using CDF correction
- P(24h- Total Precipitation > 100mm)=0.08
- P(24h Total Precipitation > 75mm)=0.25
- P(24h Total Precipitation > 50mm)=0.60

- Can we improve probabilistic prediction of infrequent events ?
- Using the 36h-lead time 'raw' PEARP ensemble
- P(24h- Total Precipitation > 100mm)=0.02
- P(24h Total Precipitation > 75mm)=0.08
- P(24h Total Precipitation > 50mm)=0.27
- Using Rank-Analog correction
- P(24h- Total Precipitation > 100mm)<0.001</p>
- P(24h Total Precipitation > 75mm)=0.005
- P(24h Total Precipitation > 50mm)=0.04

Can we improve probabilistic prediction of infrequent events ?

- Can we improve probabilistic prediction of infrequent events ?
- No Miracle ... but some questions

- Can we improve probabilistic prediction of infrequent events ?
- No Miracle ... but some questions
- What can we do when one (or more) forecasted amount of the ensemble is larger than the largest value of the training sample (and the largest observed value) ?
- Using CDF correction or Rank-Analog method will automatically decrease the forecasted amount
- Can we do something else ?

Probabilistic predictions can be greatly improve by using statistical post-processing

- Probabilistic predictions can be greatly improve by using statistical post-processing
- No method is better than the others for all thresholds at all lead times

- Probabilistic predictions can be greatly improve by using statistical post-processing
- No method is better than the others for all thresholds at all lead times
- All methods have drawbacks
 - CDF correction : suppose that forecasted and observed rainfall amount are highly correlated
 - Rank-Analog technique : need a long reforecast data set / problem of 'smoothing' when using the ensemble mean
 - Logistic regression : choice of predictor / hard to use for high thresholds

- Probabilistic predictions can be greatly improve by using statistical post-processing
- No method is better than the others for all thresholds at all lead times
- All methods have drawbacks
- Better scores for moderate and high thresholds with a reforecast data set as training period
 - Should we include the numerical cost of the reforecast in the global cost of EPS ?
 - How long should be the reforecast data set if we want to do good job for very high thresholds (40, 50 or 60mm) ?

