Finite-size ensemble Kalman filters (EnKF-N)
Iterative ensemble Kalman smoothers (IEnKS)

Marc Bocquet

Université Paris-Est, CEREA, joint lab École des Ponts ParisTech and EdF R&D, France
INRIA, Paris-Rocquencourt Research center, France

Collaborator: Pavel Sakov, BOM, Australia.

(bocquet@cerea.enpc.fr)
Outline

1 The primal EnKF-N

2 The dual EnKF-N

3 The iterative ensemble Kalman filter & smoother

4 Conclusions
The primal EnKF-N

Failure of the raw ensemble Kalman filter (EnKF)

- With the exception of Gaussian and linear systems, EnKF fails to provide a proper estimation on most systems.

- To properly work, it needs fixes: localisation and inflation.

- EnKF relies for its analysis on the first and second-order empirical moments:

\[
\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_k, \quad P = \frac{1}{N-1} \sum_{k=1}^{N} (x_k - \bar{x})(x_k - \bar{x})^T. \tag{1}
\]

Yet, \(\bar{x} \) and \(P \) may not be the true moments of the true filtering distribution (assuming there is one!). Hidden true moments of the true filtering distribution: \(x_b \) and \(B \).
Getting more from the ensemble

► Idea: even under Gaussian assumptions of the true distribution, the pdf $p(x|x_1,\ldots,x_N)$ extracts more information than $p(x|\bar{x},P)$.

► Using Gaussian assumptions, and being only interested in the filtering problem, one can get (hierarchical reasoning):

$$p(x|x_1,\ldots,x_N) = \frac{1}{p(x_1,\ldots,x_N)} \int dx_b dB \, p(x|x_b,B)p(x_1,\ldots,x_N|x_b,B)p(x_b,B). \tag{2}$$

► $p(x|x_b,B)$: the standard Gaussian prior but based on the true statistics.

► $p(x_1,\ldots,x_N|x_b,B) = \prod_{k=1}^{N} p(x_k|x_b,B)$

► $p(x_b,B)$: prior for the background statistics!
Choosing priors for the background statistics

To progress, we need to make assumptions on the background statistics $p(x_b, B)$: the statistics of the error statistics or hyperpriors.

A very simple choice is a weakly informative prior: the Jeffreys’ prior [Jeffreys 1961] with an additional assumption of independence for x_b and B:

$$p(x_b, B) \equiv p_J(x_b, B) = p_J(x_b) p_J(B)$$

and

$$p_J(x_b) = 1, \quad p_J(B) = |B|^{-\frac{M+1}{2}}.$$

With Jeffreys prior, it is possible to perform the integral (with additional complications due to rank-deficiency usually not dealt with by mathematicians).
Principle of the EnKF-N

The prior of EnKF and the prior of EnKF-N:

\[
p(x|\bar{x},P) \propto \exp \left\{ -\frac{1}{2} (x - \bar{x})^T P^{-1} (x - \bar{x}) \right\}
\]

\[
p(x|x_1, x_2, \ldots, x_N) \propto \left| (x - \bar{x}) (x - \bar{x})^T + \varepsilon_N (N - 1) P \right|^{-\frac{N}{2}},
\]

with \(\varepsilon_N = 1 \) (mean-trusting variant), or \(\varepsilon_N = 1 + \frac{1}{N} \) (original variant).

Ensemble space decomposition (ETKF version of the filters): \(x = \bar{x} + A w \).

The variational principle of the analysis (in ensemble space):

\[
\mathcal{J}(w) = \frac{1}{2} (y - H(\bar{x} + A w))^T R^{-1} (y - H(\bar{x} + A w)) + \frac{N - 1}{2} w^T w
\]

\[
\mathcal{J}(w) = \frac{1}{2} (y - H(\bar{x} + A w))^T R^{-1} (y - H(\bar{x} + A w)) + \frac{N}{2} \ln \left(\varepsilon_N + w^T w \right).
\]
EnKF-N: algorithm

1. Requires: The forecast ensemble \(\{x_k\}_{k=1,...,N} \), the observations \(y \), and error covariance matrix \(R \).
2. Compute the mean \(\bar{x} \) and the anomalies \(A \) from \(\{x_k\}_{k=1,...,N} \).
3. Compute \(Y = HA, \ \delta = y - H\bar{x} \).
4. Find the minimum:
 \[
 w_a = \min_w \left\{ (\delta - Yw)^T R^{-1} (\delta - Yw) + N \ln \left(\epsilon_N + w^T w \right) \right\}
 \]
5. Compute \(x^a = \bar{x} + Aw_a \).
6. Compute \(\Omega_a = \left(Y^T R^{-1} Y + N \left(\frac{\epsilon_N + w_a^T w_a}{(\epsilon_N + w_a^T w_a)^2} \right) I_N - 2w_a w_a^T \right)^{-1} \).
7. Compute \(W^a = \left\{ (N - 1) \Omega_a \right\}^{1/2} U \).
8. Compute \(x^a_k = x^a + A W^a_k \)
The Lorenz '95 model

- The toy-model [Lorenz and Emmanuel 1998]:
 - It represents a mid-latitude zonal circle of the global atmosphere.
 - $M = 40$ variables $\{x_m\}_{m=1,...,M}$. For $m = 1, \ldots, M$:
 \[
 \frac{dx_m}{dt} = (x_{m+1} - x_{m-2})x_{m-1} - x_m + F,
 \]
 where $F = 8$, and the boundary is cyclic.
 - Chaotic dynamics, topological dimension of 13, a doubling time of about 0.42 time units, and a Kaplan-Yorke dimension of about 27.1.

- Setup of the experiment: Time-lag between update: $\Delta t = 0.05$ (about 6 hours for a global model), fully observed, $R = I$.

Application to the Lorenz '95 model

- EnKF-N: analysis rmse versus ensemble size, for $\Delta t = 0.05$.

![Graph showing EnKF-N: analysis rmse versus ensemble size, for $\Delta t = 0.05$.]
Application to the Lorenz '95 model

Local version: LETKF-N, with $N = 10$ (beware $\Delta t = 0.01$ requires a correction).
Forced 2D turbulence model

\[\frac{\partial q}{\partial t} + J(q, \psi) = \lambda q + \nu \Delta^2 q + F, \quad q = \Delta \psi, \quad (5) \]

where \(J(q, \psi) = \partial_x q \partial_y \psi - \partial_y q \partial_x \psi \), \(q \) is the vorticity 2D field, \(\psi \) is the current function 2D field, \(F \) is the forcing, \(\lambda \) amplitude of the friction, \(\nu \) amplitude of the biharmonic diffusion, grid: \(64 \times 64 \) small enough to be in the sufficient-rank regime.

Setup of the experiment: Time-lag between update: \(\Delta_t = 2 \), fully observed, \(R = 0.1 \mathbf{I} \).
Application to forced 2D turbulence

- Comparison of: EnKF with uniform inflation, EnKF-N, adaptive inflation EnKF (EnKF-ML), $N = 80$ (rank-sufficient regime). Starting away or close from the truth.

![Graph showing vorticity rmse analysis over cycles for different methods: Reference, EnKF $\lambda = 1.02$, EnKF-ML, EnKF-N, EnKF $\lambda = 1$, EnKF $\lambda = 1.02$, EnKF-ML, EnKF-N. The x-axis represents cycle numbers from 10 to 320, and the y-axis represents vorticity rmse analysis values. The graph illustrates the performance of each method over time, with EnKF-N showing a more stable and accurate analysis compared to the others.]
Also tested on . . .

- EnKF-N also tested on:
 - Lorenz ’63 model, [Lorenz, 1963]
 - Kuramato-Sivashinski model, [Kuramato, 1975; Sivashinski, 1977]
 - NEDyM economical model, [Hallegate, Ghil and co-authors, 2008-2012]
Outline

1. The primal EnKF-N
2. The dual EnKF-N
3. The iterative ensemble Kalman filter & smoother
4. Conclusions
The dual EnKF-N

Lagrangian duality

- The **primal** EnKF-N cost function:

\[
\mathcal{J}(w) = \frac{1}{2} (y - H(\bar{x} + Xw))^T R^{-1} (y - H(\bar{x} + Xw)) + \frac{N}{2} \ln \left(\varepsilon_N + w^T w \right). \tag{6}
\]

- **Idea:** Split the radial degree of freedom of \(w \), that is \(\sqrt{w^T w} \), from its angular degrees of freedom, that is \(w / \sqrt{w^T w} \).

- Lagrangian:

\[
\mathcal{L}(w, \rho, \zeta) = \frac{1}{2} (\delta - Yw)^T R^{-1} (\delta - Yw) + \frac{1}{2} \zeta \left(w^T w - \rho \right) + \frac{N}{2} \ln (\varepsilon_N + \rho), \tag{7}
\]

where \(\delta = y - H\bar{x} \).

- Saddle point equations:

\[
\begin{aligned}
\zeta^* &= \frac{N}{(\varepsilon_N + \rho^*)} \\
\zeta^* w^* &= -Y^T R^{-1} (\delta - Yw^*)
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
\rho^* &= \frac{N}{\zeta^*} - \varepsilon_N \\
w^* &= \left(\zeta^* + Y^T R^{-1} Y \right)^{-1} Y^T R^{-1} \delta
\end{aligned} \tag{8}
\]
Non-convex strong duality

- **Dual** cost function defined for $\zeta > 0$ by

\[
D(\zeta) = \inf_{w} \sup_{\rho \geq 0} L(w, \rho, \zeta)
\]

\[
= \frac{1}{2} \delta^T (R + Y \zeta^{-1} Y^T)^{-1} \delta + \frac{\varepsilon \sqrt{N}}{2} + \frac{N}{2} \ln \frac{N}{\zeta} - \frac{N}{2}.
\]

(9)

- **Dual and primal problems:**

\[
\Delta = \inf_{\zeta > 0} D(\zeta) \quad \text{and} \quad \Pi = \inf_{w} J(w).
\]

(10)

- **Strong duality result** (non quadratic, non-convex case!):

\[
\Delta = \Pi.
\]

(11)
The dual EnKF-N scheme

1. Requires: The forecast ensemble \(\{x_k\}_{k=1,\ldots,N} \), the observations \(y \), and error covariance matrix \(R \).
2. Compute the mean \(\bar{x} \) and the anomalies \(A \) from \(\{x_k\}_{k=1,\ldots,N} \).
3. Compute \(Y = HA, \delta = y - H\bar{x} \).
4. Find the minimum:

\[
\zeta_a = \min_{\zeta \in [0,N/\epsilon_N]} \left\{ \delta^T \left(R + Y\zeta^{-1}Y^T \right)^{-1} \delta + \epsilon_N \zeta + N \ln \frac{N}{\zeta} - N \right\}
\]

(12)

5. Compute \(w_a = \left(Y^T R^{-1} Y + \zeta_a \right)^{-1} Y^T R^{-1} \delta \).
6. Compute \(x_a = \bar{x} + A w_a \).
7. Compute \(\Omega_a = \left\{ Y^T R^{-1} Y + \zeta_a \left(\frac{2\epsilon_N}{N} \zeta_a - 1 \right) \right\}^{-1} \)
8. Compute \(W^a = \{(N-1)\Omega_a\}^{1/2} U \)
9. Compute \(x_k^a = x^a + AW_k^a \)
Outline

1. The primal EnKF-N
2. The dual EnKF-N
3. The iterative ensemble Kalman filter & smoother
4. Conclusions
Iterative ensemble Kalman filters

- The iterative extended Kalman smoother [Bell, 1994] IEKS
Iterative ensemble Kalman filters

- The iterative extended Kalman smoother [Bell, 1994] IEKS

Much too costly + needs the TLM and the adjoint \rightarrow ensemble methods
Iterative ensemble Kalman filters

- The iterative extended Kalman smoother [Bell, 1994] IEKS

Much too costly + needs the TLM and the adjoint \rightarrow ensemble methods

- The iterative ensemble Kalman filter [Sakov et al., 2012; Bocquet and Sakov, 2012] IEnKF
- The iterative ensemble Kalman smoother [This talk...] IEnKS
Iterative ensemble Kalman filters

- The iterative extended Kalman filter [Wishner et al., 1969; Jazwinski, 1970] \textbf{IEKF}
- The iterative extended Kalman smoother [Bell, 1994] \textbf{IEKS}

\begin{center}
\textbf{Much too costly + needs the TLM and the adjoint \rightarrow ensemble methods}
\end{center}

- The iterative ensemble Kalman filter [Sakov et al., 2012; Bocquet and Sakov, 2012] \textbf{IEnKF}
- The iterative ensemble Kalman smoother [This talk...] \textbf{IEnKS}

\begin{center}
\textbf{It’s TLM and adjoint free!}
\end{center}
Iterative ensemble Kalman filters

- The iterative extended Kalman smoother [Bell, 1994] **IEKS**

Much too costly + needs the TLM and the adjoint → ensemble methods

- The iterative ensemble Kalman filter [Sakov et al., 2012; Bocquet and Sakov, 2012] **IEnKF**
- The iterative ensemble Kalman smoother [This talk...] **IEnKS**

It’s TLM and adjoint free!

Don’t want to be bothered by inflation tuning?
Iterative ensemble Kalman filters

- The iterative extended Kalman smoother [Bell, 1994] IEKS

Much too costly + needs the TLM and the adjoint \rightarrow ensemble methods

- The iterative ensemble Kalman filter [Sakov et al., 2012; Bocquet and Sakov, 2012] IEnKF
- The iterative ensemble Kalman smoother [This talk...] IEnKS

It’s TLM and adjoint free!

Don’t want to be bothered by inflation tuning?

- The finite-size iterative ensemble Kalman filter [Bocquet and Sakov, 2012] IEnKF-N
- The finite-size iterative ensemble Kalman smoother [This talk...] IEnKS-N
Iterative ensemble Kalman filters

- A fairly recent idea:
 [Gu & Oliver, 2007]: The idea.
 [Kalnay & Yang, 2010]: A step in the right direction.
 [Sakov, Oliver & Bertino, 2011]: The “pièce de résistance”
 [Bocquet & Sakov, 2012]: Correction of the bundle scheme + ensemble transform form.

- IEnKF cost function in ensemble space:

\[
\tilde{J}(w) = \frac{1}{2} (y_2 - H_2(M_1\rightarrow_2(x_1 + A_1w)))^T R_2^{-1} (y_2 - H_2(M_1\rightarrow_2(x_1 + A_1w))) \\
+ \frac{1}{2} (N - 1)w^T w. \tag{13}
\]

- Gauss-Newton scheme:

\[
w^{(p+1)} = w^{(p)} - \tilde{H}^{-1}(p) \nabla \tilde{J}(w^{(p)})
\]

\[
\nabla \tilde{J}(p) = -Y^T(p) R_2^{-1} \left(y_2 - H_2 M_1\rightarrow_2(x + A_1w^{(p)}) \right) + (N - 1)w^{(p)},
\]

\[
\tilde{H}(p) = (N - 1)I_N + Y^T(p) R_2^{-1} Y(p), \quad Y(p) = [H_2 M_2\leftarrow_1 A_1]'(p), \tag{14}
\]
Iterative ensemble Kalman filters

- Sensitivities Y_p computed by ensemble propagation without TLM and adjoint.

- Finite-size versions of the filter are just defined by substituting the prior:

$$\frac{N-1}{2}w^Tw \rightarrow \frac{N}{2} \ln \left(\epsilon_N + w^Tw \right).$$ \hspace{1cm} (15)

- As a variational reduced method, one can use Gauss-Newton [Sakov et al., 2012], Levenberg-Marquardt [Bocquet and Sakov, 2012; Chen and Oliver, 2012], etc, minimisation schemes (not limited to quasi-Newton).

- Essentially a lag-one smoother. Does the job of a lag-one 4D-Var, with dynamical error covariance matrix and without the use of the TLM and adjoint! Very efficient in very nonlinear conditions if one can afford the multiple ensemble propagations.
Finite-size iterative ensemble Kalman filters

- Setup: Lorenz ’95, $M = 40$, $N = 40$, $\Delta t = 0.05 - 0.60$, $\mathbf{R} = \mathbf{I}$.
- Comparison of EnKF-N, EnKF (optimal inflation), IEnKF-N (bundle and transform), IEnKF (bundle and transform, optimal inflation)
Iterative ensemble Kalman smoothers

- In a mildly nonlinear context (built on linear and Gaussian hypotheses)
 Many earlier studies, see [Cosme et al., 2012] for a review, and [Cosme et al., 2010] for an application to oceanography.

- In a non-sequential but very non-linear context
 Many earlier studies, for instance [Evensen and van Leeuwen, 2000] [Chen & Oliver, 2012] in the context of reservoir modelling

- Sequential nonlinear context: [This talk]
 The IEnKS cost function is just the extension of the IEnKF cost function for a temporal window of L cycles.
Finite-size iterative ensemble Kalman smoothers

 SETUP: Lorenz ’95, $M = 40$, $N = 20$, $\Delta t = 0.05$, $R = I$.

 ![Graph showing re-analysis rmse over lag (number of cycles).]
Finite-size iterative ensemble Kalman smoothers

- Setup: Lorenz '95, $M = 40$, $N = 20$, $\Delta t = 0.30$, $R = I$.
- Lin-IEnKS-N has (understandably) diverged.
Finite-size iterative ensemble Kalman smoothers

- Setup: 2D turbulence, 64×64, $N = 40$, $\Delta t = 2$, $R = 0.1I$.

![Graph showing vorticity re-analysis rmse over lag (number of cycles)]
1. The primal EnKF-N
2. The dual EnKF-N
3. The iterative ensemble Kalman filter & smoother
4. Conclusions
Conclusions

- A new prior for the ensemble forecast meant to be used in an EnKF analysis has been built. It takes into account sampling errors.
- It yields a new class of filters EnKF-N, that does not seem to require inflation supposed to account for sampling errors.
- Local variants (both LA and CL) available.
- Dual variant EnKF-N is an EnKF with built-in optimal inflation (accounting for sampling errors).
- Almost linear regime more problematic because of Jeffreys’ prior. Another hyperprior is needed.
- The iterative ensemble Kalman filter has been generalised to an iterative ensemble Kalman smoother (IEnKF). It is an En-Var method.
- It is tangent linear and adjoint free. It is, by construction, flow-dependent.
- Though based on Gaussian assumptions, it can offer better retrospective analysis than standard Kalman smoothers in midly nonlinear conditions.
- When affordable, it beats other Kalman filter/smoothers in strongly non-linear conditions.
Main references I

