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Introduction

Particle filter
..

The particle filter represents a probability density function (PDF) by a
Monte Carlo approximation.
The ensemble representing a posterior PDF is obtained by resampling a
forecast ensemble.
It is applicable even to the cases with non-linear or non-Gaussian
observations.
However, it requires a huge number of particles to avoid the problem
due to ensemble degeneracy.
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Particle filter
..

The particle filter algorithm is based on the importance sampling
method, which represents the posterior PDF by weighted sample.
If we choose a good proposal distribution similar to the posterior PDF,
the imbalance of weights among the particles can be reduced, and
therefore we could achieve high accuracy and high computational
efficiency.
The prior (forecast) PDF is usually used as the proposal PDF. This
makes the algorithm simple. But, a large discrepancy often exists
between the prior PDF and the posterior PDF.
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Ensemble transform Kalman filter
..

We consider to use the ensemble transform Kalman filter (ETKF)
(Bishop et al, 2001) to obtain a proposal distribution for importance
sampling.
In the ETKF, the first and second order moments of the PDF is
represented by an ensemble.
The ETKF algorithm is derived on the basis of the linear Gaussian
observation model.
It therefore ignores non-Gaussian features of the PDF.
The aim of using the importance sampling method is to represent
non-Gaussian features of the PDF that is not considered by the ETKF.
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Remark
..

The importance sampling method is based on a Monte Carlo
representation which assumes that the ensemble size is of the order of
the exponential of the state dimension.
On the other hand, the ensemble Kalman filters (esp. ETKF) is used
with a limited ensemble size (much less than the state dimension).
If the ensemble size N is smaller than the rank of the state covariance
matrix, the ensemble would form a simplex in an (N − 1)-dimensional
subspace; that is, it provides a spherical simplex representation of the
PDF (Wang et al., 2004).
The ETKF uses a conceptually different representation from the
importance sampling.

Monte Carlo representation Simplex representation
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Overview

Posterior distribution

(with importance sampling)

Proposal distribution

(Simplex representation)

Posterior distribution

(with many samples)

Approximated posterior

(Simplex representation)

Forecast distribution Proposal distribution

(with ETKF)

We consider cases in which the
forecast PDF is represented by a
simplex representation with a
limited-size ensemble.

To allow nonlinear or non-Gaussian
observation models, the simplex
representation is converted into a
Monte Carlo representation. Then the
importance sampling method is
applied.

Finally, the importance sampling
result is converted into a simplex
representation again.
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Ensemble transform Kalman filter

Some definitions

Suppose that the forecast distribution is represented by an ensemble
{x(1)

k|k−1, . . . , x
(N)
k|k−1}.

The mean of the forecast distribution is obtained as:

x̄k|k−1 =
1
N

N∑
i=1

x(i)
k|k−1.

We define a matrix Xk|k−1 and Yk|k−1 as

Xk|k−1 =
1
√

N

(
δx(1)

k|k−1 · · · δx(N)
k|k−1

)
, Yk|k−1 =

1
√

N

(
δy(1)

k|k−1 · · · δy(N)
k|k−1

)
,

where δx(i)
k|k−1 = x(i)

k|k−1 − xk|k−1 and δy(i)
k|k−1 = Hk(x(i)

k|k−1) − Hk(xk|k−1), respectively,
and we assumed the following observation model

yk = Hk(xk) + wk.

The covariance matrix of the forecast (predictive) distribution is written as
Vk|k−1 = Xk|k−1XT

k|k−1.
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Ensemble transform Kalman filter (ETKF) (Bishop et al., 2001)

The mean of the filtered distribution is obtained according to the Kalman filter
algorithm:

x†k|k = xk|k−1 + Kk
(
yk − Hkxk|k−1

)
The square root of the covariance matrix is also calculated as X†k|k = Xk|k−1Tk,
where the matrix Tk is designed to satisfy V†k|k = X†k|kX

†T
k|k and X†k|k1 = 0,

where 1 = (1 · · · 1)T . The latter condition is required to preserve the mean of
the PDF (Wang et al., 2004; Livings et al., 2008).

Using the following eigen-value decomposition

Yk|k−1R−1
k Yk|k−1 = UkΛkUT

k ,

the matrices Kk and Tk are obtained as follows:

Kk = Xk|k−1Uk(IN + Λk)−1UT
k YT

k|k−1R−1
k ,

Tk = Uk(IN + Λk)−
1
2 UT

k ,

where Rk is the covariance matrix of the observation noise.
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Ensemble transform Kalman filter

Sampling from the ETKF estimate
..

The ETKF estimates the filtered (posterior) distribution as a Gaussian
distribution N(x̄†k|k,V

†
k|k).

However, it does not actually calculate the covariance matrix V†k|k itself.
Instead, a square root of the covariance matrix X†k|k is calculated.
Using the matrix X†k|k, we can easily generate a large number of random
numbers obeying N(x̄†k|k,V

†
k|k) using the following generative model:

xk = x̄†k|k + X†k|kzk, where zk ∼ N(0, IN).

Monte Carlo representationSimplex representation
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Importance sampling

Since the posterior distribution p(xk |y1:k) is written as

p(xk |y1:k) =
p(xk |y1:k)
π(xk)

π(xk) =
p(yk |xk)p(xk |y1:k−1)

p(yk |y1:k−1)π(xk)
π(xk),

the posterior p(xk |y1:k) can be represented by the importance sampling
using the sample drawn from π(xk):

p(xk |y1:k) ≈
M∑

j=1

p(yk |x
π(j)
k )p(xπ(j)k |y1:k−1)

p(yk |y1:k−1)π(xπ(j)k )
δ(xk − xπ(j)k ).

In the normal particle filter, the forecast p(xk |y1:k−1) is used as π(xk).
On the other hand, we use the estimate of p(xk |y1:k) obtained by the
ETKF as the proposal π(xk).
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Importance sampling

If we obtain the proposal π(xk) by the ETKF, we can generate a large
number of particles from π(xk) according to the following generative
model:

xπ(j)k = x̄†k|k + X†k|kz(j)
k

(
z(j)

k ∼ N(0, IN)
)
.

In order to approximate the posterior p(xk |y1:k) using the importance
sampling method as follows:

p(xk |y1:k) ≈
M∑

j=1

p(yk |x
π(j)
k )p(xπ(j)k |y1:k−1)

p(yk |y1:k−1)π(xπ(j)k )
δ(xk − xπ(j)k ),

we need to calculate
p(xπ(j)k |y1:k−1)

π(xπ(j)k )

for each particle xπ(j)k . (We can obtain p(yk |x
π(j)
k ) from the observation

model. )
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Importance weight

According to the generative model

xπ(j)k = x̄†k|k + X†k|kz(j)
k

(
z(j)

k ∼ N(0, IN)
)
,

π(xπ,(j)k|k ) can be associated with the probability density for z(j)
k , p(z(j)

k ).

The probability density p(z(j)
k ) is proportional to exp

(
−∥z(j)

k ∥2/2
)
.

Considering that X†k|k satisfies the mean-preserving condition X†k|k1 = 0,
the component parallel to 1 is projected onto a null space. We therefore
obtain

π(xπ,(j)k|k ) ∝ exp

−1
2

∥∥∥∥z(j)
k

∥∥∥∥2 − (1Tz(j)
k )2

N

 .
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Importance sampling..
We consider that a sample from the forecast p(xk |y1:k−1) is generated according to the
following model:

xk = x̄k|k−1 + Xk|k−1zk

(
zk ∼ N(0, IN)

)
.

We can then evaluate the probability density that xπ,(j)k|k is drawn from the forecast
distribution as follows:

xπ,(j)k|k = x†k|k + X†k|kz(j)
k = xk|k−1 + Kk

(
yk − hk(xk|k−1)

)
+ Xk|k−1Tkz(j)

k

= xk|k−1 + Xk|k−1

[
Uk(IN + Λk)−1UT

k YT
k|k−1R−1

(
yk − hk(xk|k−1)

)
+ Tkz(j)

]
= xk|k−1 + Xk|k−1ζ

(j)
k

where
ζ(j)

k = Uk(IN + Λk)−1UT
k YT

k|k−1R−1
(
yk − hk(xk|k−1)

)
+ Tkz(j).

We therefore obtain

p(xπ,(j)k|k |y1:k−1) ∝ exp

−1
2

∥∥∥ζ(j)
k

∥∥∥2 − (1Tζ(j)
k )2

N

 .
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As seen previously, the posterior distribution is approximated as

p(xk |y1:k) ≈
M∑

j=1

p(yk |x
π(j)
k )p(xπ(j)k |y1:k−1)

p(yk |y1:k−1)π(xπ(j)k )
δ(xk − xπ(j)k ).

If we generate the proposal sample according to the following model:

xπ,(j)k|k = x̄k|k−1 + Xk|k−1z(j)
k

(
z(j)

k ∼ N(0, IN)
)
,

the weight for each particle can be given as follows:

β
(j)
k ∝

p(yk |x
π,(j)
k|k ) exp

−1
2

∥∥∥ζ(j)
k

∥∥∥2 − (1Tζ(j)
k )2

N


exp

−1
2

∥∥∥z(j)
k

∥∥∥2 − (1T z(j)
k )2

N


.

We then obtain a new approximation of the posterior PDF:

p(xk |y1:k) ≈
M∑

j=1

β
(j)
k δ(xk − xπ(j)k ).
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Ensemble reconstruction

Using the weight β(j)
k , we can obtain a random sample from the

posterior p(xk |y1:k) with the rejection sampling method or the
independent chain Metropolis-Hastings method.
However, we consider the case in which a large ensemble size is not
allowed. A small-size ensemble generated randomly would not give a
good approximation of p(xk |y1:k).
To avoid the errors due to the randomness, we construct a simplex
approximation that represents the first and second order moments of the
posterior.

Monte Carlo representation Simplex representation
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Moments on the z-space

If we calculate the mean and the covariance on the z-space:

z̄k =

M∑
i=1

β
(j)
k z(j)

k , Vz,k|k =
M∑

i=1

β
(j)
k (z(j)

k − z̄k)(z(j)
k − z̄k)T ,

the mean and the covariance of the filtered distribution p(xk |y1:k) are given as
follows:

xk|k = x†k|k + X†k|k z̄k, Vk|k = Xk|kXT
k|k = X†k|kVz,k|kX

†T
k|k

where x†k|k and X†k|k provide the estimate by the ETKF.

To avoid the bias of the ensemble mean, the new Xk|k should also satisfy

Xk|k1 = 0.
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Reconstruction

We define the following matrix

A = IN −
1
N


1 · · · 1
...
. . .

...
1 · · · 1

 ,
which obviously satisfies

A1 = 0.

The covariance matrix Vk|k can then be written as follows:

Vk|k = X†k|kVz,k|kX
†T
k|k

= X†k|kA Vz,k|kATX†Tk|k

because obviously X†k|k = X†k|kA.
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Reconstruction

When we calculate the eigen-value decomposition of the matrix A Vz,k|kAT as

A Vz,k|kAT = Uz,kΓkUT
z,k,

the matrix Uz,k contains an eigen-vector which is parallel to 1 and
corresponds to zero eigen-value. Therefore, if we define Xk|k as

Xk|k = X†k|kUz,kΓ
1
2
k UT

z,k,

it satisfies both of the necessary conditions:

Xk|kXT
k|k = X†k|kVz,k|kX

†T
k|k,

Xk|k1 = 0.
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Ensemble reconstruction

Finally, we obtain ensemble perturbations:(
δx(1)

k|k−1 · · · δx(N)
k|k−1

)
=
√

N Xk|k−1.

We then obtain the filtered ensemble:

x(i)
k|k = xk|k + δx(i)

k|k.
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Remark

Using the generative model, xπ(j)k = x̄†k|k +X†k|kz(j)
k , the ensemble members

are generated in the subspace spanned by the ensemble members.
We could consider a small uncertainty in the complement space as
follows

xπ,(j)k = x†k|k + X†k|kz(j)
k + ε

(j)
k ,

where ε(j)
k is a random sample representing the uncertainty of the

orthogonal complement space. But, this may invoke ‘the curse of
dimensionality’.
As far as we ignore the complement space, we can convert between the
importance sampling result and a spherical simplex representation
through the calculation in the small subspace spanned by the forecast
ensemble members. This would help reduce the computational cost.
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Experiment

We performed experiments using the Lorenz 96 model (Lorenz and Emanuel
1998):

dxl

dt
= (xl+1 − xl−2)xl−1 − xl + f

where x−1 = xL−1, x0 = xL, and xL+1 = x1. We take the dimension of a state
vector L to be 40 and the forcing term f to be 8. One time step was assumed
to be 0.01.

It was assumed that xl can be observed only if l is an even number. This
means that the half of the variables xl are observable.
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Experiment

The following observation model is considered:

yl
k = log |xl

k | + wl
k

(
wl

k ∼ N(0, 0.0225)
)

The system noise is assumed as follows:

vl
k ∼ N(0, 0.01).
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Result

An estimate of an observed variable

With 30 ensemble members (and 1920 particles for importance
sampling)
RMSE: 0.06 (with the hybrid algorithm), 0.19 (with the ETKF)
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ETKF
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Hybrid
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Experiment

Result

An estimate of an unobserved variable

With 30 ensemble members (and 1920 particles for importance
sampling)
RMSE: 0.06 (with the hybrid algorithm), 0.19 (with the ETKF)
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Result

Blue line: the result with the ETKF
Histogram: the result with the hybrid algorithm
Solid vertical line: the true state
Dashed vertical line: the observed value
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Summary

A good proposal distribution could improve the computational
efficiency of the particle filter.
We propose a hybrid algorithm which use the ensemble transform
Kalman filter (ETKF) to obtain the proposal.
While the importance sampling method used in the particle filter
requires abundant particles, the ETKF is based on a spherical simplex
representation which uses less particles than the state dimension. We
then make the conversion between a simplex representation and a
Monte Carlo representation.
In our approach, this conversion is performed in the low-dimensional
subspace spanned by the forecast ensemble members.
Even though the uncertainty is considered only in the subspace, the
proposed approach seems to well work in the cases with nonlinear,
non-Gaussian observation models in which the application of ensemble
Kalman filters is not valid.
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