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Motivation

The ensemble Kalman filter (EnKF) is now widely used.

» The particle filter (PF) offers the possibility of better
performance in non-linear, non-Gaussian situations.

» Can an existing EnKF be converted to a PF?
» Papadakis et al (2010) introduced the weighted EnKF

(WEnKF) combining best features of EnKF and PF; they
concentrated on perturbed-observations EnKF.

Van Leeuwen (2009) sketched a similar approach for ensemble
square roots filters (SRFs), but there was a flaw in the theory.

This work fixes the flaw and simplifies and generalises the
theory.

But does it work in practice?

)
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Outline

Particle Filter with Proposal Density

Proposal Density from Ensemble Square Root Filter

Test Results
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Particle Filter with Proposal Density
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Filtering Problem

» Discrete time Markov process with states x; (t =0,1,..

» Characterised by p(xg), p(x¢|x¢—1) (t > 1)

» Conditionally independent observations y, (t =1,2,...)

» Characterised by p(y,|x:) (t > 1)

» The filtering problem is to determine p(xt|y;.;) where
Yt =¥1,¥2,-- -, ¥e):

)
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Particle Filter with Proposal Density

> Particle representation p(x¢|yq.;) = > _; wfi)é(xt - xgi))
» Algorithm is based on proposal density g(xo.+|y;.;) satisfying

q(XO:t|Y1:t) = q(Xt|Xt71aYt)q(XO:thbIl:t—l)
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Particle Filter with Proposal Density: Algorithm

» Build up particles recursively:
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Particle Filter with Proposal Density: Requirements for
Implementation

To implement the algorithm, we must be able to:
» Sample from g(xg) and g(xt|x:—1,y;)
» Evaluate g(x0), q(xt|xt-1,¥¢), P(%0), pP(Xe[Xt-1), p(y¢l%t)
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Proposal Density from Ensemble Square Root Filter
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Ensemble Kalman Filter

>

Dynamical and observation models:

xe = M(xe-1)+n:
ye = H(x:¢)+e

7, €: random, satisfy certain independence conditions

Ensemble Kalman filter maintains ensemble of states xg')
through alternating forecast and analysis steps.

Forecast step: x.) = M(x\") ) + n{")
Analysis step: uses y, to transform forecast ensemble xi(i)
analysis ensemble xg')

to

» Plan: use analysis ensemble as particles in particle filter

v

Question: what g(x¢|x¢-1,¥;) have we sampled from?
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Evaluation of p(y,|x:)

> p(yelxe) = pe.(ye — H(x¢))
» Can evaluate as long as can evaluate H(x;), p(€;)
» Don't have to use same y,, H(x:), p(€:) in PF as in EnKF

» Opens possibility of using PF to assimilate observations
additional to those used in EnKF
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Evaluation of p(x;|x;_1)

> p(xelXe 1) = P, (x: — M(x:-1))
Can evaluate as long as can evaluate M(x:-1), p(1;_1)
Don't have to evaluate l\/l(xgi_)l) if EnKF stores it

» Don't have to use same M(x:_1), p(n,_;) in PF as in EnKF

» Possible problem: what if there are multiple forecast steps

between observation times?

Solution: treat intermediate steps as complete EnKF steps
with uninformative observations (p(y,|x:) constant) and
analysis step that leaves forecast ensemble unchanged:

(i) P(x(t':)!X?:L) w,
q(xx )

With same dynamical model, reduces to W,_Ei) = Wt(i)l
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Ensemble Square Root Filters
Tippett et al (2003)

Essentials of analysis algorithm:

xf + K°(y — yf)
X = Xxfr

]
|

where

» X is analysis ensemble mean

» xf is forecast ensemble mean

» K° is ensemble approximation of Kalman gain

» yf is mean of forecast observation ensemble yf() = H(x!(1)

» X is analysis ensemble perturbation matrix

» X' is forecast ensemble perturbation matrix

» T is a function of forecast ensemble members; different
formulations use different functions.
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Potential Problem for Particle Filter

xf + K(y — )
X = xfr

X
I

v

Analysis step destroys independence of particles.

For one thing, X depends on all x() via xI.

v

Fortunately, x! tends to property of system as whole as
ensemble size N — oo.

v

Similarly for K¢ and yf
But there are two problems with T.

T mixes up ensemble members.

vV v v Vv

T is N x N, so cannot tend to limit as N — oo.
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Solution

» Most ensemble square root filters can be written in

pre-multiplier form:
X = AX'

» This applies to:

» EAKF (Anderson, 2001)

» Filter of Whitaker and Hamill (2002)

» Symmetric version of ETKF (Wang et al, 2004)

» Any ensemble square root filter that is unbiased and
nondegenerate in a certain sense (Livings et al, 2008)

» A has fixed size, so there is hope it tends to limit as N — oo.

» For specific filters above, A does tend to property of system
as whole as N — oo.

» If A is property of system as whole, independence of particles
is preserved.
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Evaluation of q(x;|x;_1,y,) and Weights

» Generalise to any analysis step of the form
i f(i
Xg) = A(Yr)xt( ) +b(y:)
where A(y,), b(y,) are properties of system as whole.
(i _ £(i), (i
> Then q(xt”|x{”},y,) = [A(ye)| Mgl x,).

> |A(y,)| ! is the same for all particles, so can be dropped
from the weights:

(i) p(yex)p(x7x{,) (i)
e (7)) () el
q(x¢ |x;71)

> (D)) is just g(n'))).
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Theoretical Conclusions

v

It appears to be easy to convert an ensemble SRF into a PF:

(i) p(yex)p(xx7)) (i)
Wee OIMO) W1
q(x: " [x;21)

v

Call this a weighted ensemble SRF.

No linear or Gaussian assumptions are necessary.

v

v

The filter doesn't even have to be an ensemble SRF; it just
has to have an analysis step of the form

X(ti) = A(Yr)xi(i) +b(y,)

v

As long as refinements such as inflation or localisation
preserve this form, the particle filter is still correct.
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Test Results
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Test System

» Lorenz-63 as used by Ades
and Van Leeuwen (2012) to
test equivalent weights
particle filter

» Gaussian model noise each
timestep, std = v2At,
At =0.01

» Observations of all
coordinates every
40 timesteps, Gaussian
0 2 3 errors, std = /2

First 1200 timesteps of truth » Gaussian initial distribution,
std = /2
> Weighted ensemble SRF
from EAKF with 10 particles

<o

19/21



Results

» After assimilating the first observation, the weights of all but
one of the particles have collapsed to zero.

» The problem is that the displacement of a particle during the
analysis is typically much larger than the single-step model
noise, making very small values of p(x(t')]xg'_)l) likely.

() o pyex)pix 1)) )

Wi i), G t—1
q(xiPx7

» Replacing the EAKF with an ETKF doesn't help.
» Using 100 particles doesn't help.
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Practical Conclusions

» The weighted ensemble SRF is only viable if the single-step
model noise is at least comparable in size with the particle
displacements during analysis.

» This is not so for the Lorenz-63 test system.
» Is it so for an NWP system?
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