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Motivation

I The ensemble Kalman filter (EnKF) is now widely used.

I The particle filter (PF) offers the possibility of better
performance in non-linear, non-Gaussian situations.

I Can an existing EnKF be converted to a PF?

I Papadakis et al (2010) introduced the weighted EnKF
(WEnKF) combining best features of EnKF and PF; they
concentrated on perturbed-observations EnKF.

I Van Leeuwen (2009) sketched a similar approach for ensemble
square roots filters (SRFs), but there was a flaw in the theory.

I This work fixes the flaw and simplifies and generalises the
theory.

I But does it work in practice?
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Filtering Problem

I Discrete time Markov process with states xt (t = 0, 1, . . .)

I Characterised by p(x0), p(xt |xt−1) (t ≥ 1)

I Conditionally independent observations yt (t = 1, 2, . . .)

I Characterised by p(yt |xt) (t ≥ 1)

I The filtering problem is to determine p(xt |y1:t) where
y1:t = (y1,y2, . . . ,yt).
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Particle Filter with Proposal Density

I Particle representation p(xt |y1:t) ≈
∑

i w
(i)
t δ(xt − x(i)

t )

I Algorithm is based on proposal density q(x0:t |y1:t) satisfying

q(x0:t |y1:t) = q(xt |xt−1,yt)q(x0:t−1|y1:t−1)
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Particle Filter with Proposal Density: Algorithm

I Build up particles recursively:

x(i)
0 ∼ q(x0)

x(i)
t ∼ q(xt |x(i)

t−1,yt)

I Update weights recursively:

w
(i)
0 ∝

p(x(i)
0 )

q(x(i)
0 )

w
(i)
t ∝

p(yt |x
(i)
t )p(x(i)

t |x
(i)
t−1)

q(x(i)
t |x

(i)
t−1,yt)

w
(i)
t−1

with constraint
∑

i w
(i)
t = 1
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Particle Filter with Proposal Density: Requirements for
Implementation

To implement the algorithm, we must be able to:

I Sample from q(x0) and q(xt |xt−1,yt)

I Evaluate q(x0), q(xt |xt−1,yt), p(x0), p(xt |xt−1), p(yt |xt)
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Ensemble Kalman Filter

I Dynamical and observation models:

xt = M(xt−1) + ηt−1

yt = H(xt) + εt

I ηt , εt random, satisfy certain independence conditions

I Ensemble Kalman filter maintains ensemble of states x(i)
t

through alternating forecast and analysis steps.

I Forecast step: xf(i)
t = M(x(i)

t−1) + η
(i)
t−1

I Analysis step: uses yt to transform forecast ensemble xf(i)
t to

analysis ensemble x(i)
t

I Plan: use analysis ensemble as particles in particle filter

I Question: what q(xt |xt−1,yt) have we sampled from?
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Evaluation of p(yt |xt)

I p(yt |xt) = pεt (yt − H(xt))

I Can evaluate as long as can evaluate H(xt), p(εt)

I Don’t have to use same yt , H(xt), p(εt) in PF as in EnKF

I Opens possibility of using PF to assimilate observations
additional to those used in EnKF
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Evaluation of p(xt |xt−1)

I p(xt |xt−1) = pηt−1
(xt −M(xt−1))

I Can evaluate as long as can evaluate M(xt−1), p(ηt−1)

I Don’t have to evaluate M(x(i)
t−1) if EnKF stores it

I Don’t have to use same M(xt−1), p(ηt−1) in PF as in EnKF

I Possible problem: what if there are multiple forecast steps
between observation times?

I Solution: treat intermediate steps as complete EnKF steps
with uninformative observations (p(yt |xt) constant) and
analysis step that leaves forecast ensemble unchanged:

w
(i)
t ∝

p(x(i)
t |x

(i)
t−1)

q(x(i)
t |x

(i)
t−1)

w
(i)
t−1

I With same dynamical model, reduces to w
(i)
t = w

(i)
t−1
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Ensemble Square Root Filters
Tippett et al (2003)

Essentials of analysis algorithm:

x = xf + Ke(y − yf)

X = XfT

where

I x is analysis ensemble mean

I xf is forecast ensemble mean

I Ke is ensemble approximation of Kalman gain

I yf is mean of forecast observation ensemble yf(i) = H(xf(i))

I X is analysis ensemble perturbation matrix

I Xf is forecast ensemble perturbation matrix

I T is a function of forecast ensemble members; different
formulations use different functions.

13 / 21



Potential Problem for Particle Filter

x = xf + Ke(y − yf)

X = XfT

I Analysis step destroys independence of particles.

I For one thing, x depends on all xf(i) via xf .

I Fortunately, xf tends to property of system as whole as
ensemble size N →∞.

I Similarly for Ke and yf

I But there are two problems with T.

I T mixes up ensemble members.

I T is N × N, so cannot tend to limit as N →∞.
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Solution

I Most ensemble square root filters can be written in
pre-multiplier form:

X = AXf

I This applies to:
I EAKF (Anderson, 2001)
I Filter of Whitaker and Hamill (2002)
I Symmetric version of ETKF (Wang et al, 2004)
I Any ensemble square root filter that is unbiased and

nondegenerate in a certain sense (Livings et al, 2008)

I A has fixed size, so there is hope it tends to limit as N →∞.

I For specific filters above, A does tend to property of system
as whole as N →∞.

I If A is property of system as whole, independence of particles
is preserved.
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Evaluation of q(xt |xt−1,yt) and Weights

I Generalise to any analysis step of the form

x(i)
t = A(yt)xf(i)

t + b(yt)

where A(yt), b(yt) are properties of system as whole.

I Then q(x(i)
t |x

(i)
t−1,yt) = |A(yt)|−1q(xf(i)

t |x
(i)
t−1).

I |A(yt)|−1 is the same for all particles, so can be dropped
from the weights:

w
(i)
t ∝

p(yt |x
(i)
t )p(x(i)

t |x
(i)
t−1)

q(xf(i)
t |x

(i)
t−1)

w
(i)
t−1

I q(xf(i)
t |x

(i)
t−1) is just q(η

(i)
t−1).
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Theoretical Conclusions

I It appears to be easy to convert an ensemble SRF into a PF:

w
(i)
t ∝

p(yt |x
(i)
t )p(x(i)

t |x
(i)
t−1)

q(xf(i)
t |x

(i)
t−1)

w
(i)
t−1

I Call this a weighted ensemble SRF.

I No linear or Gaussian assumptions are necessary.

I The filter doesn’t even have to be an ensemble SRF; it just
has to have an analysis step of the form

x(i)
t = A(yt)xf(i)

t + b(yt)

I As long as refinements such as inflation or localisation
preserve this form, the particle filter is still correct.
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Test System
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First 1200 timesteps of truth

I Lorenz-63 as used by Ades
and Van Leeuwen (2012) to
test equivalent weights
particle filter

I Gaussian model noise each
timestep, std =

√
2∆t,

∆t = 0.01

I Observations of all
coordinates every
40 timesteps, Gaussian
errors, std =

√
2

I Gaussian initial distribution,
std =

√
2

I Weighted ensemble SRF
from EAKF with 10 particles
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Results

I After assimilating the first observation, the weights of all but
one of the particles have collapsed to zero.

I The problem is that the displacement of a particle during the
analysis is typically much larger than the single-step model

noise, making very small values of p(x(i)
t |x

(i)
t−1) likely.

w
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t ∝
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t |x
(i)
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w
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I Replacing the EAKF with an ETKF doesn’t help.

I Using 100 particles doesn’t help.
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Practical Conclusions

I The weighted ensemble SRF is only viable if the single-step
model noise is at least comparable in size with the particle
displacements during analysis.

I This is not so for the Lorenz-63 test system.

I Is it so for an NWP system?
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Nicolas Papadakis, Etienne Mémin, Anne Cuzol, and Nicolas
Gengembre.
Data assimilation with the weighted ensemble Kalman filter.
Tellus, 62A(5):673–697, 2010.

22 / 21



References II

Michael K. Tippett, Jeffrey L. Anderson, Craig H. Bishop,
Thomas M. Hamill, and Jeffrey S. Whitaker.
Ensemble square root filters.
Mon. Wea. Rev., 131(7):1485–1490, 2003.

Peter Jan van Leeuwen.
Particle filtering in geophysical systems.
Mon. Wea. Rev., 137(12):4089–4114, 2009.

Xuguang Wang, Craig H. Bishop, and Simon J. Julier.
Which is better, an ensemble of positive-negative pairs or a
centered spherical simplex ensemble?
Mon. Wea. Rev., 132(7):1590–1605, 2004.

Jeffrey S. Whitaker and Thomas M. Hamill.
Ensemble data assimilation without perturbed observations.
Mon. Wea. Rev., 130(7):1913–1924, 2002.

23 / 21


	Particle Filter with Proposal Density
	Proposal Density from Ensemble Square Root Filter
	Test Results
	Appendix

