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1 (EnKF as particle system with mean–field interactions : 1)

non–linear state–space model of a special form

Xk = fk(Xk−1) +Wk with Wk ∼ N(0, Qk)

Yk = Hk Xk + Vk with Vk ∼ N(0, Rk)

with non–necessarily Gaussian initial condition X0 ∼ η0

observation noise covariance matrix Rk assumed invertible

in such a model, conditional probability distribution (aka Bayesian filter)

of hidden state Xk given past observations Y0:k = (Y0, · · · , Yk)

is not Gaussian

ensemble Kalman filter provides a Bayes–free Monte Carlo approach to

numerically evaluate the Bayesian filter, as an alternative to particle filters



2 (EnKF as particle system with mean–field interactions : 2)

I initialization : initial ensemble (X1,f
0 , · · · , XN,f

0 ) is simulated as i.i.d. random

vectors with probability distribution η0, i.e. with same statistics as initial condition

X0

I prediction (forecast) step : given analysis ensemble (X1,a
k−1, · · · , X

N,a
k−1) each

member is propagated independently according to (set of decoupled equations)

Xi,f
k = fk(X

i,a
k−1) +W i

k with W i
k ∼ N(0, Qk)

here, i.i.d. random vectors (W 1
k , · · · ,WN

k ) are simulated with same statistics as

additive Gaussian noise Wk in original state equation : in particular

(W 1
k , · · · ,WN

k ) are independent of forecast ensemble (X1,a
k−1, · · · , X

N,a
k−1)

define empirical covariance matrix

PN,f
k =

1

N

N∑
i=1

(Xi,f
k −mN,f

k ) (Xi,f
k −mN,f

k )∗ with mN,f
k =

1

N

N∑
i=1

Xi,f
k

of forecast ensemble (X1,f
k , · · · , XN,f

k )



3 (EnKF as particle system with mean–field interactions : 3)

I correction (analysis) step : given forecast ensemble (X1,f
k , · · · , XN,f

k ) each

member is updated independently according to (set of equations with mean–field

interactions)

Xi,a
k = Xi,f

k +Kk(P
N,f
k ) (Yk −Hk Xi,f

k − V i
k ) with V i

k ∼ N(0, Rk)

in terms of Kalman gain mapping defined by

P 7−→ Kk(P ) = P H∗
k (Hk P H∗

k +Rk)
−1

for any m×m covariance matrix P ,

and in terms of empirical covariance matrix PN,f
k of forecast ensemble

here, i.i.d. random vectors (V 1
k , · · · , V N

k ) are simulated with same statistics as

additive Gaussian noise Vk in original observation equation : in particular

(V 1
k , · · · , V N

k ) are independent of forecast ensemble (X1,f
k , · · · , XN,f

k )



4 (EnKF as particle system with mean–field interactions : 4)

mean–field interaction : given that

Xi,a
k = Xi,f

k +Kk(P
N,f
k ) (Yk −Hk Xi,f

k − V i
k )

each analysis member depends on whole forecast ensemble (X1,f
k , · · · , XN,f

k )

through empirical probability distribution

µN,f
k =

1

N

N∑
i=1

δ
Xi,f

k

actually only through empirical covariance matrix PN,f
k of forecast ensemble

−→ results in dependent analysis ensemble (X1,a
k , · · · , XN,a

k )



5 (EnKF as particle system with mean–field interactions : 5)

question : does ensemble empirical probability distribution converge to Bayesian

filter, defined as

µ−
k (dx) = P[Xk ∈ dx | Y0:k−1] and µk(dx) = P[Xk ∈ dx | Y0:k]

i.e. does

µN,f
k =

1

N

N∑
i=1

δ
Xi,f

k

−→ µ−
k and µN,a

k =
1

N

N∑
i=1

δ
Xi,a

k

−→ µk

hold in some sense, as N ↑ ∞ ?

answer in general is negative

however, in the linear Gaussian case (i.e. if fk(x) depends linearly on x), then

answer is positive and in particular ensemble empirical mean vector does converge

to Kalman predictor / filter, i.e.

X̂N,f
k =

1

N

N∑
i=1

Xi,f
k −→ X̂−

k and X̂N,a
k =

1

N

N∑
i=1

Xi,a
k −→ X̂k

as N ↑ ∞



6 (EnKF as particle system with mean–field interactions : 6)

decoupling approach : to study asymptotic behaviour of empirical probability

distributions

µN,f
k =

1

N

N∑
i=1

δ
Xi,f

k

and µN,a
k =

1

N

N∑
i=1

δ
Xi,a

k

of forecast ensemble and analysis ensemble, respectively, approximating i.i.d.

random vectors are introduced as follows

initially X̄i,f
0 = Xi,f

0 , i.e. initial set of i.i.d. random vectors coincides exactly with

initial forecast ensemble

these vectors are propagated independently according to (set of fully decoupled

equations)

X̄i,f
k = fk(X̄

i,a
k−1) +W i

k with W i
k ∼ N(0, Qk)

and

X̄i,a
k = X̄i,f

k +Kk(P̄
f
k ) (Yk −Hk X̄i,f

k − V i
k ) with V i

k ∼ N(0, Rk)

where P̄ f
k denotes (true) covariance matrix of i.i.d. random vectors X̄i,f

k



7 (EnKF as particle system with mean–field interactions : 7)

heuristics : these i.i.d. random vectors are close (contiguous) to members in

ensemble Kalman filter, since they

• start from same initial values exactly

• use same i.i.d. random vectors (W 1
k , · · · ,WN

k ) and (V 1
k , · · · , V N

k ) exactly,

already simulated and used in ensemble Kalman filter

essentially a theoretical (not practical) concept

• large sample asymptotics is simple to analyze, because of independance

• true covariance matrix P̄ f
k is unknown, hence these i.i.d. random vectors are

not computable in practice

in contrast, members in ensemble Kalman filter are computable but dependent,

because they all contribute to / use empirical covariance matrix PN,f
k which

results in mean–field interaction
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8 (identification of the limit : 1)

intuition : limiting probability distributions µ̄f
k and µ̄a

k are probability distributions

of i.i.d. random vectors X̄i,f
k and X̄i,a

k respectively, and are completely

characterized by integrals of arbitrary test functions

I initialization : recall that X̄i,f
0 = Xi,f

0 and Xi,f
0 ∼ η0, hence µ̄f

0 = η0

I forecast (expression of µ̄f
k in terms of µ̄a

k−1) : recall that

X̄i,f
k = fk(X̄

i,a
k−1) +W i

k with W i
k ∼ N(0, Qk)

and since X̄i,a
k−1 has probability distribution µ̄a

k−1 (by definition), then∫
Rm

ϕ(x′) µ̄f
k(dx

′) = E[ϕ(X̄i,f
k )] = E[ϕ(fk(X̄i,a

k−1) +W i
k))]

=

∫
Rm

∫
Rm

ϕ(fk(x) + w) pWk (dw)︸ ︷︷ ︸
Tk ϕ(x)

µ̄a
k−1(dx)

where pWk (dw) is Gaussian probability distribution with zero mean vector and

covariance matrix Qk, i.e. probability distribution of random vector W i
k



9 (identification of the limit : 2)

I analysis (expression of µ̄a
k in terms of µ̄f

k) : recall that

X̄i,a
k = X̄i,f

k +Kk(P̄
f
k ) (Yk −Hk X̄i,f

k − V i
k ) with V i

k ∼ N(0, Rk)

sufficient conditions on drift function fk can be given, under which µ̄f
k has finite

second order moments, in which case covariance matrix P̄ f
k is finite

and since X̄i,f
k has probability distribution µ̄f

k (by definition), then∫
Rm

ϕ(x′) µ̄a
k(dx

′) = E[ϕ(X̄i,a
k )] = E[ϕ(X̄i,f

k +Kk(P̄
f
k ) (Yk −Hk X̄i,f

k − V i
k ))]

=

∫
Rm

∫
Rd

ϕ(x+Kk(P̄
f
k ) (Yk −Hk x− v)) qVk (v) dv︸ ︷︷ ︸
TKF
k (µ̄f

k)ϕ(x)

µ̄f
k(dx)

where qVk (v) is Gaussian density with zero mean vector and invertible covariance

matrix Rk, i.e. probability density of random vector V i
k



10 (identification of the limit : 3)

on the other hand, Bayesian filter, defined as

µ−
k (dx) = P[Xk ∈ dx | Y0:k−1] and µk(dx) = P[Xk ∈ dx | Y0:k]

satisfies recurrent relation∫
Rm

ϕ(x′) µ−
k (dx

′) =

∫
Rm

∫
Rm

ϕ(fk(x) + w) pWk (dw)︸ ︷︷ ︸
Tk ϕ(x)

µk−1(dx)

and (Bayes rule)

∫
Rm

ϕ(x′) µk(dx
′) =

∫
Rm

ϕ(x′) qVk (Yk −Hk x
′) µ−

k (dx
′)∫

Rm

qVk (Yk −Hk x
′) µ−

k (dx
′)

with initial condition µ−
0 = η0

clearly, limiting probability distributions of forecast / analysis ensemble do not

coincide with Bayesian predictor / filter, i.e. µ̄f
k ̸= µ−

k and µ̄a
k ̸= µk, except in the

linear Gaussian case
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11 (large sample asymptotics of EnKF : 1)

indeed, intuition is correct : ensemble empirical probability distributions

µN,•
k =

1

N

N∑
i=1

δ
Xi,•

k

do converge (in some sense) as N ↑ ∞ to the probability distribution µ̄•
k of i.i.d.

random vectors X̄i,•
k (hence, not to the Bayesian filter)

reference

F. Le Gland, V. Monbet and Vu–Duc Tran Large sample asymptotics for

the ensemble Kalman filter , chapter 22 in The Oxford Handbook of

Nonlinear Filtering, 2011



12 (large sample asymptotics of EnKF : 2)

Theorem (law of large numbers) under mild assumptions on drift function fk

and on test function ϕ

1

N

N∑
i=1

ϕ(Xi,•
k ) −→

∫
Rm

ϕ(x) µ̄•
k(dx)

in probability as N ↑ ∞

Theorem (Lp–convergence and rate of convergence) under mild assumptions on

drift function fk and on test function ϕ, and provided initial condition X0 has

finite moments of any order p

sup
N≥1

√
N (E| 1

N

N∑
i=1

ϕ(Xi,•
k )−

∫
Rm

ϕ(x) µ̄•
k(dx) |p )1/p < ∞

for any order p



13 (large sample asymptotics of EnKF : 3)

to summarize : ensemble Kalman filter

• gain matrix depends on empirical covariance matrix

• ensemble empirical probability distribution converges to the wrong limit

(different from Bayesian filter), except for linear Gaussian model

• rate of convergence 1/
√
N

vs. (any brand of) particle filter

• weighted empirical probability distribution of particle system converges to the

correct limit (Bayesian filter)

• rate of convergence 1/
√
N , with central limit theorem

question : is there any advantage to use ensemble Kalman filter ?

idea : prove central limit theorem (and compare asymptotic error variances)



outline

• EnKF as particle system with mean–field interaction

• identification of the limit

• large sample asymptotics of EnKF

• toy example

• central limit theorem for EnKF



14 (toy example : 1)

toy example

linear Gaussian system

the target distribution, i.e. the Bayesian filter, is known explicitly as a

Gaussian distribution, with mean and covariance provided by the Kalman

filter

hidden state

Xk = a Xk−1 +
√
1− a2 Wk with Wk ∼ N(0, σ2)

initial condition X0 ∼ N(0, σ2) so that stationarity holds

observations

Yk = Xk + Vk with Vk ∼ N(0, s2)

numerical values

a σ s

0.5 1 1



15 (toy example : 2)
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16 (toy example : 3)
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17 (toy example : 4)
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18 (toy example : 5)

conclusion : not only does the EnKF empirical mean vector

X̂N,a
k =

1

N

N∑
i=1

Xi,a
k

converge to the Kalman filter X̂k, but more generally the EnKF empirical

probability distribution

µN,a
k =

1

N

N∑
i=1

δ
Xi,a

k

converges to the Gaussian distribution with moments given by the Kalman filter

next different question : how fast does the empirical mean vector converge to the

Kalman filter, e.g. is the normalized difference

√
N (X̂N,a

k − X̂k) =
1√
N

N∑
i=1

(Xi,a
k − X̂k)

asymptotically normally distributed and how to compute the asymptotic variance ?



19 (toy example : 6)

toy example (continued)

numerical simulations : for EnKF / bootstrap particle filter / particle filter with

optimal importance distribution

• M Monte Carlo runs

• each Monte Carlo run evaluates one ensemble / particle average, based on N

members / particles and compares this average with the (known) limit

• histogram of the M normalized differences is shown

same toy example : stationary linear Gaussian system

with same numerical values

a σ s

0.5 1 1



20 (toy example : 7)
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21 (toy example : 8)
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22 (toy example : 9)
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23 (toy example : 10)

first findings (based on these first simulations) : in terms of speed of convergence

(a smaller asymptotic variance means a faster convergence)

PF with optimal importance distribution ≫ bootstrap PF ≫ EnKF

however, consider same toy example : stationary linear Gaussian system

with different numerical values (smaller observation noise)

a σ s

0.5 1 0.01



24 (toy example : 11)
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25 (toy example : 12)
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26 (toy example : 13)
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√
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27 (toy example : 14)

somehow different findings (based on these different simulations) : in terms of

speed of convergence (a smaller asymptotic variance means a faster convergence)

PF with optimal importance distribution ≈ EnKF ≫ bootstrap PF

conclusion : results have been obtained in the large sample asymptotics

• EnKF is (asymptotically) biased, does not converge to the optimal Bayesian

filter, except in the linear Gaussian case

• in particular, empirical mean of EnKF ensemble does not converge to MMSE

(conditional mean) of hidden state given past observations

• normalized approximation error (difference of empirical mean of EnKF

ensemble and its limit) is asymptotically Gaussian, with (more or less

computable) expression for the asymptotic variance

are these results relevant / can they provide any help or insight in the more

practical case of a finite (small) ensemble size ?
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28 (central limit theorem for EnKF : 1)

Theorem (central limit theorem) under mild assumptions on drift function fk

and on test function ϕ

1√
N

N∑
i=1

[ϕ(Xi,•
k )−

∫
Rm

ϕ(x) µ̄•
k(dx) ] =⇒ N(0, v̄•k(ϕ))

in distribution as N ↑ ∞, with (more or less explicit) expression for asymptotic

variance v̄•k(ϕ)

beyond the qualitative statement

• recurrence relations for the asymptotic variance ?

• practical computations ?

because of the recursive nature of the ensemble Kalman filter, it seems natural to

prove the CLT by induction, and to rely on a strategy already used in Künsch

(Annals of Statistics, 2005)



29 (central limit theorem for EnKF : 2)

Lemma if

• conditionally w.r.t. FN , the r.v. Z ′
N converges in distribution to a Gaussian

r.v. with zero mean and variance V ′, in the sense that for any fixed u

E[exp{j uZ ′
N} | FN ] −→ exp{−1

2 u
2 V ′}

in probability, and in L1 by the Lebesgue dominated convergence thorem

• the r.v. Z ′′
N is measurable w.r.t. FN , and converges in distribution to a

Gaussian r.v. with zero mean and variance V ′′, i.e. for any fixed u

E[exp{j uZ ′′
N}] −→ exp{−1

2 u
2 V ′′}

then the r.v. ZN = Z ′
N + Z ′′

N converges in distribution to a Gaussian r.v. with

zero mean and variance V = V ′ + V ′′, as N ↑ ∞



30 (central limit theorem for EnKF : 3)

I initialization : recall that Xi,f
0 ∼ η0 and µ̄f

0 = η0, hence

1√
N

N∑
i=1

[ϕ(Xi,f
0 )−

∫
Rm

ϕ(x) µ̄f
0 (dx) ] =⇒ N(0, v̄f0 (ϕ))

in distribution as N ↑ ∞, with asymptotic variance

v̄f0 (ϕ) = var(ϕ, η0) =

∫
Rm

|ϕ(x)|2 η0(dx)− |
∫
Rm

ϕ(x) η0(dx) |2



31 (central limit theorem for EnKF : 4)

I forecast step : recall that µ̄f
k = µ̄a

k−1 Tk, where

Tk ϕ(x) =

∫
Rm

ϕ(fk(x) + w) pWk (dw)

Proposition asymptotic variance of forecast approximation

v̄fk (ϕ) = v̄ak−1(Tk ϕ) + σ2,f
k (ϕ)

in terms of

• asymptotic variance of analysis approximation at previous step,

evaluated for a transformed test function

• asymptotic Monte Carlo variance

σ2,f
k (ϕ) =

∫
Rm

Tk |ϕ|2(x) µ̄a
k−1(dx)−

∫
Rm

|Tk ϕ(x)|2 µ̄a
k−1(dx)



32 (central limit theorem for EnKF : 5)

hint :

ZN =
1√
N

N∑
i=1

[ϕ(Xi,f
k )−

∫
Rm

ϕ(x′) µ̄f
k(dx

′) ]

=
1√
N

N∑
i=1

[ϕ(fk(X
i,a
k−1) +W i

k)−
∫
Rm

ϕ(x′) µ̄f
k(dx

′) ]

=
1√
N

N∑
i=1

[ϕ(fk(X
i,a
k−1) +W i

k)− Tk ϕ(X
i,a
k−1) ]

+
1√
N

N∑
i=1

[Tk ϕ(X
i,a
k−1)−

∫
Rm

Tk ϕ(x) µ̄
a
k−1(dx) ]

= Z ′
N + Z ′′

N



33 (central limit theorem for EnKF : 6)

I analysis step : recall that µ̄a
k = µ̄f

k TKF
k (µ̄f

k), where

TKF
k (µ̄f

k)ϕ(x) =

∫
Rd

ϕ(x+Kk(P̄
f
k ) (Yk −Hk x− v)) qVk (v) dv

Proposition asymptotic variance of analysis approximation

v̄ak(ϕ) = v̄fk (Q
KF
k (µ̄f

k)ϕ) + σ2,a
k (ϕ)

in terms of

• asymptotic variance of analysis approximation at previous step,

evaluated for a transformed test function

• asymptotic Monte Carlo variance

σ2,a
k (ϕ) =

∫
Rm

TKF
k (µ̄f

k) |ϕ|
2(x) µ̄f

k(dx)−
∫
Rm

|TKF
k (µ̄f

k)ϕ(x)|
2 µ̄f

k(dx)



34 (central limit theorem for EnKF : 7)

here, new transform

QKF
k (µ̄f

k)ϕ(x) = TKF
k (µ̄f

k)ϕ(x) + (x− m̄f
k)

∗ MKF
k (µ̄f

k , ϕ) (x− m̄f
k)

is defined in terms of matrices

MKF
k (µ̄f

k , ϕ) = H∗
k (Hk P̄

f
k H∗

k +Rk)
−1 LKF

k (µ̄f
k , ϕ) (I −Kk(P̄

f
k ) Hk)

and

LKF
k (µ̄f

k , ϕ) =

∫
Rm

∫
Rd

(Yk −Hk x− v) ϕ′(x+Kk(P̄
f
k ) (Yk −Hk x− v))

qVk (v) dv µ̄f
k(dx)



35 (central limit theorem for EnKF : 8)

hint :

ZN =
1√
N

N∑
i=1

[ϕ(Xi,a
k )−

∫
Rm

ϕ(x′) µ̄a
k(dx

′) ]

=
1√
N

N∑
i=1

[ϕ(Xi,f
k +Kk(P

N,f
k ) (Yk −Hk X

i,f
k − V i

k ))−
∫
Rm

ϕ(x′) µ̄a
k(dx

′) ]

=
1√
N

N∑
i=1

[ϕ(Xi,f
k +Kk(P

N,f
k ) (Yk −Hk X

i,f
k − V i

k ))− TKF
k (µN,f

k )ϕ(Xi,f
k ) ]

+
1√
N

N∑
i=1

[TKF
k (µN,f

k )ϕ(Xi,f
k )− TKF

k (µ̄f
k)ϕ(X

i,f
k ) ]

+
1√
N

N∑
i=1

[TKF
k (µ̄f

k)ϕ(X
i,f
k )−

∫
Rm

TKF
k (µ̄f

k)ϕ(x) µ̄
f
k(dx) ]

= Z ′
N + Z ′′

N + Z ′′′
N
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I practical computations : iterating the recurrence relations

v̄ak(ϕ) = v̄fk (Q
KF
k (µ̄f

k)ϕ) + σ2,a
k (ϕ)

and

v̄fk (ϕ) = v̄ak−1(Tk ϕ) + σ2,f
k (ϕ)

yields

v̄ak(ϕ) = v̄fk (Q
KF
k (µ̄f

k)ϕ) + σ2,a
k (ϕ)

= v̄ak−1(Tk Q
KF
k (µ̄f

k)︸ ︷︷ ︸
RKF

k (µ̄f
k)

ϕ) + σ2,f
k (QKF

k (µ̄f
k)ϕ) + σ2,a

k (ϕ)︸ ︷︷ ︸
σ2
k(ϕ)

with initialization

v̄a0 (ϕ) = v̄f0 (Q
KF
0 (µ̄f

0 )ϕ) + σ2,a
0 (ϕ) = var(QKF

0 (η0)ϕ, η0) + σ2,a
0 (ϕ)
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writing RKF
k = RKF

k (µ̄f
k) for simplicity

v̄ak(ϕ) = v̄ak−1(R
KF
k ϕ) + σ2

k(ϕ)

v̄ak−1(R
KF
k ϕ) = v̄ak−2(R

KF
k−1 R

KF
k ϕ) + σ2

k−1(R
KF
k ϕ)

...

v̄al (R
KF
l+1 · · ·RKF

k ϕ) = v̄al−1(R
KF
l · · ·RKF

k ϕ) + σ2
l (R

KF
l+1 · · ·RKF

k ϕ)

...

v̄a1 (R
KF
2 · · ·RKF

k ϕ) = v̄a0 (R
KF
1 · · ·RKF

k ϕ) + σ2
1(R

KF
2 · · ·RKF

k ϕ)

hence

v̄ak(ϕ) = v̄a0 (R
KF
1 · · ·RKF

k ϕ) +
k∑

l=1

σ2
l (R

KF
l+1 · · ·RKF

k ϕ)

in terms of backward–propagated functions

RKF
l+1:k ϕ = RKF

l+1 · · ·RKF
k ϕ
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further simplifications occur in the special case of

• linear (and quadratic) test functions ϕ

• linear drift function fk

indeed

• forward–propagated distributions µ̄f
k and µ̄a

k are Gaussian distributions with

moments given by the Kalman filter

• backward–propagated functions RKF
l+1 · · ·RKF

k ϕ remain quadratic at all steps

and explicit calculations can be obtained


