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(EnKF as particle system with mean—field interactions :

non—linear state—space model of a special form

X = fiu(Xg—1) + Wi with Wi ~ N(0, Q)

with non—necessarily Gaussian initial condition X ~ 7
observation noise covariance matrix ;. assumed invertible

in such a model, conditional probability distribution (aka Bayesian filter)
of hidden state X, given past observations Yy., = (Yo, -+, Yi)

Is not Gaussian

ensemble Kalman filter provides a Bayes—free Monte Carlo approach to
numerically evaluate the Bayesian filter, as an alternative to particle filters
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(EnKF as particle system with mean—field interactions :

» initialization : initial ensemble (Xé’f, ce ,Xév’f) is simulated as i.i.d. random

vectors with probability distribution 79, i.e. with same statistics as initial condition
Xo

» prediction (forecast) step : given analysis ensemble (X,ifbl, ce ,X,?EC{) each
member is propagated independently according to (set of decoupled equations)

Xp! = (X)W with W~ N(0,Qx)

here, i.i.d. random vectors (W}, --- W/ are simulated with same statistics as
additive Gaussian noise W in original state equation : in particular
(W}, -+« ;W) are independent of forecast ensemble (X,ifl, ce ,X,?EC{)

define empirical covariance matrix
1 .
N: .7 N? .7 N7 * ! N) _ .7
P, f:—Z(X;f—mk f) (X;f—m/IC f) with mk:f—N ZXIZJC
i=1

N 4
1 =1

of forecast ensemble (X,i’f, ce ,X,iv’f)
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(EnKF as particle system with mean—field interactions :

» correction (analysis) step : given forecast ensemble (X,i’f, ce ,X,iv’f) each
member is updated independently according to (set of equations with mean—field
interactions)

X=X L Ky (PYY (Vi — Hy X0T - V) with VE~ N(0, Ry,)
in terms of Kalman gain mapping defined by
P~ K,(P)=PH; (H, PH +Ry)""

for any m x m covariance matrix P,
. .. . : N
and in terms of empirical covariance matrix P, " of forecast ensemble

here, i.i.d. random vectors (V;!,--- | V}V) are simulated with same statistics as

additive Gaussian noise V}, in original observation equation : in particular
(V1 -+, V) are independent of forecast ensemble (X,i’f, e ,X,iv’f)
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(EnKF as particle system with mean—field interactions : 4)

mean—field interaction : given that
Xy = Xp7 4+ Ko (P (Vi = Hi X7 = W)

each analysis member depends on whole forecast ensemble (X,i’f, e ,X,iv’f)
through empirical probability distribution

1 N
vio Lsg
e =N 20

1=1

actually only through empirical covariance matrix Pév’f of forecast ensemble

— results in dependent analysis ensemble (X%, -, X%



(EnKF as particle system with mean—field interactions : 5)

question : does ensemble empirical probability distribution converge to Bayesian
filter, defined as

,u]; (d$) = ]P)[Xk € dx ’ YO:k—l] and ,uk(dx) = P[Xk € dx ‘ YO:k]

I.e. does

N N
1 1
N,f _ _ N,a _ |
py = — E_l 5X;;’f — [y and = = == E_l 5X;C,a — Lk

hold in some sense, as N 1 oo ?
answer in general is negative

however, in the linear Gaussian case (i.e. if fi(x) depends linearly on z), then
answer iIs positive and in particular ensemble empirical mean vector does converge
to Kalman predictor / filter, i.e.

N N
N,f _ E i, f — N,a 2 : 1,a
1 =1 1=1

as N T oo



(EnKF as particle system with mean—field interactions

decoupling approach : to study asymptotic behaviour of empirical probability
distributions

Nf: 25 i and ,ujkv’a’:% Z5Xi,a

of forecast ensemble and analysis ensemble, respectively, approximating i.i.d.
random vectors are introduced as follows

initially Xé’f = Xé’f, i.e. initial set of i.i.d. random vectors coincides exactly with
initial forecast ensemble

these vectors are propagated independently according to (set of fully decoupled
equations)

= fr(X0) + Wi with W~ N(0, Q)
and
X=X L Ky(P)) (Ve — Hy X7 — V) with Vi~ N(0, Ry)

where P,f denotes (true) covariance matrix of i.i.d. random vectors X’li’f

: 6)



(EnKF as particle system with mean—field interactions :

heuristics : these i.i.d. random vectors are close (contiguous) to members in
ensemble Kalman filter, since they

e start from same initial values exactly

e use same i.i.d. random vectors (W}!,--- W) and (V,}, -+, V}V) exactly,
already simulated and used in ensemble Kalman filter

essentially a theoretical (not practical) concept
e large sample asymptotics is simple to analyze, because of independance

e true covariance matrix P,f Is unknown, hence these i.i.d. random vectors are
not computable in practice

in contrast, members in ensemble Kalman filter are computable but dependent,
because they all contribute to / use empirical covariance matrix Pév’f which

results in mean—field interaction
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(identification of the limit : 1)

intuition : limiting probability distributions ,L_L£ and p7 are probability distributions
of i.i.d. random vectors X}/ and X" respectively, and are completely
characterized by integrals of arbitrary test functions

» initialization : recall that Xé’f = Xé’f and Xé’f ~ 1o, hence ,Eag =1

» forecast (expression of ,a£ in terms of i1 ) : recall that
Xl = f(X0) + W with W~ N(0, Q)

and since )_(,i’f’l has probability distribution ¢ | (by definition), then

9@ f(de) = EB(X)] = Blo(fu(X%) + W)

= [t w) ol ) ()

7

T, ;g(ﬂ?)

where p;” (dw) is Gaussian probability distribution with zero mean vector and
covariance matrix Qy, i.e. probability distribution of random vector W/}



(identification of the limit : 2)

» analysis (expression of if in terms of ,ai) . recall that

X]i,a — X;’f + Kk(pg) (Yk — Hy, X;’f — Vé) with sz ~ N(O, Rk)
sufficient conditions on drift function f; can be given, under which /1‘,’; has finite
second order moments, in which case covariance matrix ]5,5 Is finite

and since X'li’f has probability distribution a{; (by definition), then

o) pi(d') = E[p(X;)] = E[p(X + Kn(P) (Vi — Hi Xy = V)]

7

— /m Rdﬁb(af—FKk(Pg) (Yk—Hkaj—fU» QI‘c/(U)dU,L_L£<dJZ>

TR () ()

where ¢} (v) is Gaussian density with zero mean vector and invertible covariance

matrix Ry, i.e. probability density of random vector V}!



10 (identification of the limit : 3)

on the other hand, Bayesian filter, defined as
py (dr) =P[Xy € dr | Yo.—1] and pr(de) =P Xy € dr | Yo.x]

satisfies recurrent relation

o) i () = [ [ o) +w) pl (@) s (o

7

Rm

N

T ()
and (Bayes rule)

/ o(z') qf (Vi — Hya') i, (da')
oz’ i (da’) = 2B
R /m qr, (Vi — Hy2') py, (da')

with initial condition p, = 79

clearly, limiting probability distributions of forecast / analysis ensemble do not
coincide with Bayesian predictor / filter, i.e. /1],; # p, and [ff # (g, except in the
linear Gaussian case
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11 (large sample asymptotics of EnKF : 1)

indeed, intuition is correct : ensemble empirical probability distributions

1 N
N,e 2 : .
Iuk: — N 5XI7;7‘
1=1

do converge (in some sense) as [N 1 0o to the probability distribution 7 of i.i.d.
random vectors )_(,Z" (hence, not to the Bayesian filter)

reference

F. Le Gland, V. Monbet and Vu—Duc Tran Large sample asymptotics for
the ensemble Kalman filter, chapter 22 in The Oxford Handbook of
Nonlinear Filtering, 2011



(large sample asymptotics of EnKF :

Theorem (law of large numbers) under mild assumptions on drift function f;
and on test function ¢

Rm

S0 — [ o)

in probability as IV 1 oo

Theorem (ILP—convergence and rate of convergence) under mild assumptions on
drift function fi and on test function ¢, and provided initial condition X has
finite moments of any order p

sup VIV (E| - qu X0 = [ ) pp(da) PP < o

N>1 R™

for any order p

2)



13 (large sample asymptotics of EnKF : 3)

to summarize : ensemble Kalman filter
e gain matrix depends on empirical covariance matrix

e ensemble empirical probability distribution converges to the wrong limit
(different from Bayesian filter), except for linear Gaussian model

e rate of convergence 1/v/' N
vs. (any brand of) particle filter

e weighted empirical probability distribution of particle system converges to the
correct limit (Bayesian filter)

e rate of convergence 1/v/ N, with central limit theorem

question : is there any advantage to use ensemble Kalman filter ?

idea : prove central limit theorem (and compare asymptotic error variances)
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14 (toy example : 1)

toy example
linear Gaussian system

the target distribution, i.e. the Bayesian filter, is known explicitly as a
Gaussian distribution, with mean and covariance provided by the Kalman
filter

hidden state
Xp=aXp_1+V1—-a2W,  with W~ N(0,0?)

initial condition Xy ~ N(0,0?) so that stationarity holds

observations
Vi =X +Vi  with Vi ~N(0,s%)

numerical values

05 1]1




15 (toy example : 2)

true state and Kalman filter
25 T T T T T T T T T
true state
2t Kalman filter |

|

0 10 20 30 40 50 60 70 80 90 100



16 (toy example : 3)

true state, Kalman filter and EnKF empirical mean : 10000 elements
25 T T T T T T T T T
true state
2k Kalman filter |4
EnKF

15 I A

0 10 20 30 40 50 60 70 80 90 100

EnKF empirical mean vector X'éva with V = 10000 members



(toy example : 4)

EnKF histogram + Kalman filter density : time 100
07 T T T T T T

0.5

0.4r

0.3}

0.2}

EnKF histogram with N = 10000 members



18 (toy example : 5)

conclusion : not only does the EnKF empirical mean vector

1 <
a _ N ZX]Z,G
1=1

converge to the Kalman filter X’k but more generally the EnKF empirical
probability distribution

converges to the Gaussian distribution with moments given by the Kalman filter

next different question : how fast does the empirical mean vector converge to the
Kalman filter, e.g. is the normalized difference

N

\/N(Xli\fa_Xk \/72 ’La_/\

=1

asymptotically normally distributed and how to compute the asymptotic variance ?



19 (toy example : 6)

toy example (continued)

numerical simulations : for EnKF / bootstrap particle filter / particle filter with
optimal importance distribution

e N Monte Carlo runs

e each Monte Carlo run evaluates one ensemble / particle average, based on N
members / particles and compares this average with the (known) limit

e histogram of the M normalized differences is shown

same toy example : stationary linear Gaussian system
with same numerical values

05|11




(toy example : 7)

histogram of normalized error of EnKF empirical mean : 10000 Monte Carlo runs
07 T T T T T

0.6 4

0.5 7

0.3} 7

0.2} 7

histogram of EnKF normalized differences v/ N ()A(,iva — X’k) for N = 1000
members and M = 10000 Monte Carlo runs

empirical standard deviation 0.880
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(toy example :

histogram of normalized error of PF empirical mean : 10000 Monte Carlo runs
0.7

0.6
0.5 —
0.4F M
0.3}
0.2}

0.1}

. mHnHDHHHH{

-3

HHHHHDHHH

histogram of (bootstrap) particle filter normalized differences v N ()?,iv — X},) for
N = 1000 particles and M = 10000 Monte Carlo runs

empirical standard deviation 0.822

8)



22 (toy example : 9)

histogram of normalized error of PF empirical mean : 10000 Monte Carlo runs
07 T T T T T

0.6 4

0.3}

0.2}

0.1}

histogram of (optimal) particle filter normalized differences v N ()?,iv — X} for
N = 1000 particles and M = 10000 Monte Carlo runs

empirical standard deviation 0.713
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first findings (based on these first simulations) :

(toy example :

in terms of speed of convergence

(a smaller asymptotic variance means a faster convergence)

PF with optimal importance distribution > bootstrap PF > EnKF

however, consider same toy example : stationary linear Gaussian system

with different numerical values (smaller observation noise)

a

o)

0.5

0.01

10)
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histogram of normalized error of EnKF empirical mean : 10000 Monte Carlo runs
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(toy example :

histogram of EnKF normalized differences /N ()A(,iva’ — )A(k) for N = 1000

members and M = 10000 Monte Carlo runs

empirical standard deviation 0.100

11)
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(toy example :

histogram of normalized error of PF empirical mean : 10000 Monte Carlo runs

4.5F
al
35F
3k
25F
ol _
15F o =

1_

B mnﬂHHHHH Hﬂﬂﬂﬂﬂmm

-05 -04 -03 -02 -01 0 0.1 0.2 0.3 0.4 0.5

histogram of (bootstrap) particle filter normalized differences v N ()?,iv — X},) for
N = 1000 particles and M = 10000 Monte Carlo runs

empirical standard deviation 0.182

12)
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histogram of normalized error of PF empirical mean : 10000 Monte Carlo runs
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(toy example :

histogram of (optimal) particle filter normalized differences v N ()?,iv — X} for

N = 1000 particles and M = 10000 Monte Carlo runs

empirical standard deviation 0.099

13)



27 (toy example : 14)

somehow different findings (based on these different simulations) : in terms of
speed of convergence (a smaller asymptotic variance means a faster convergence)

PF with optimal importance distribution ~ EnKF > bootstrap PF

conclusion : results have been obtained in the large sample asymptotics

e EnKF is (asymptotically) biased, does not converge to the optimal Bayesian
filter, except in the linear Gaussian case

e in particular, empirical mean of EnKF ensemble does not converge to MMSE
(conditional mean) of hidden state given past observations

e normalized approximation error (difference of empirical mean of EnKF
ensemble and its limit) is asymptotically Gaussian, with (more or less
computable) expression for the asymptotic variance

are these results relevant / can they provide any help or insight in the more
practical case of a finite (small) ensemble size 7
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28 (central limit theorem for EnKF : 1)

Theorem (central limit theorem) under mild assumptions on drift function fy
and on test function ¢

¢LN Yo 6(X") — [ olw) Ait(d)] = N, 53(0)

in distribution as N 1 0o, with (more or less explicit) expression for asymptotic

variance Uy (o)

beyond the qualitative statement
e recurrence relations for the asymptotic variance ?

e practical computations ?

because of the recursive nature of the ensemble Kalman filter, it seems natural to
prove the CLT by induction, and to rely on a strategy already used in Kiinsch
(Annals of Statistics, 2005)



29 (central limit theorem for EnKF : 2)

Lemma if

e conditionally w.r.t. Iy, the r.v. Z; converges in distribution to a Gaussian
r.v. with zero mean and variance V', in the sense that for any fixed u

Elexp{juZy} | Fn] — exp{—3u* V'}
in probability, and in L' by the Lebesgue dominated convergence thorem

e the r.v. Z}(f Is measurable w.r.t. 3, and converges in distribution to a
Gaussian r.v. with zero mean and variance V", i.e. for any fixed u

Elexp{juZy}] — exp{—% u? V"

then the r.v. Zy = Z, + Z}; converges in distribution to a Gaussian r.v. with
zero mean and variance V =V’ + V" as N 1 ¢



30 (central limit theorem for EnKF : 3)
» initialization : recall that Xé’f ~ 19 and ,L_L(j; = 19, hence

N

\/% Sexe) — [ o) il (dx) ] = N0, 5 ()

i=1 R™

in distribution as N 7 oo, with asymptotic variance

4(6) = var(o.m) = | Jo@)Pmlda) = | [ ota)mo(da)

m



31 (central limit theorem for EnKF : 4)

» forecast step : recall that /j£ = g4 T}y, where

Te¢(x) = [ o(fu() +w) py (dw)

Rm

Proposition asymptotic variance of forecast approximation

() = 0¢_1(Ty ) + 077 (9)
In terms of

e asymptotic variance of analysis approximation at previous step,
evaluated for a transformed test function

e asymptotic Monte Carlo variance

o6 = [ TeloP@) i alde) = [ Do) o (da)
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hint :

(central limit theorem for EnKF : 5)



33 (central limit theorem for EnKF : 6)

» analysis step : recall that i = ,uk TKF(,uk) where

Ti" (i) o(x) = y oz + Ki(Pl) (Ve = Hyw —v)) g (v) dv

Proposition asymptotic variance of analysis approximation

() = 0L (QKF (1)) ¢) + o7 (9)
in terms of

e asymptotic variance of analysis approximation at previous step,
evaluated for a transformed test function

e asymptotic Monte Carlo variance

a0) = [ Tl 6P pf(do) ~ [ TET(a]) o) i o)



34 (central limit theorem for EnKF : 7)

here, new transform
k() o) = T () éa) + (@ — )" M () (x — mf)
is defined in terms of matrices
M (. ¢) = Hi; (Hy, B Hi + Ry~ LES (, 6) (I - Ki(Bf) Hy)
and

Li¥ (i, ¢) = /m /Rd(Yk—Hka:—v) ¢'(x + Ke(P]) (Yi — Hyw — v))



35 (central limit theorem for EnKF : 8)

hint :
Zy = 7= Y6 - [ o) piaa)]
_ %ﬁ >0+ KB (= By X = V) = o) p(de!)]
- %N D _[o(Xp! + Kn(B) (Vi = Hy Xy = Vi) = TEF () o(X )]
o SUTER () (X ) = T i) o( X))
1 al KF/_f i, f KF/-f —f
= SATE i o) — | T () o) o (o)



36 (central limit theorem for EnKF : 9)

» practical computations : iterating the recurrence relations

() = oL (QRT (A]) &) + a7 (9)

ol (¢) = 0f_1(Tk ¢) + 077 ()

with initialization

76(¢) = 03 (Q0 " (1) ) + 09" (8) = var(Qg™ (o) b, 70) + 05 ()



37 (central limit theorem for EnKF : 10)
writing REF = REF(l) for simplicity
0(6) = Uiy (R 0) + k(o)

U 1 (RyY ¢) = 0f_o(RpE Rt @) + o1 (Ry" ¢)
@?(Rﬁi - RyY o) = v (R RN 9) + (Rl+1 -R;" ¢)

of (Ry - Ry" @) = 0(RyY - Ry ¢) + o7 (By" -+ RyH ¢)

hence
k

vp(9) = vg(RY" - RN ¢) + ) of (RS- R ¢)
=1

in terms of backward—propagated functions

R d =R Ryt ¢



38 (central limit theorem for EnKF : 11)

further simplifications occur in the special case of
e linear (and quadratic) test functions ¢
e linear drift function f%

iIndeed

e forward—propagated distributions ,a£ and [1} are Gaussian distributions with
moments given by the Kalman filter

e backward—propagated functions R} - - Ri*" ¢ remain quadratic at all steps

and explicit calculations can be obtained



