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Introduction
It is well known that ensemble-based data assimilation can
provide a spatially-inhomogeneous, time-dependent (and cyclical)
estimate of the forecast error covariance, which can be used to
achieve a more accurate assimilation of available observations.

For increasing ensemble size, estimate converges to the BLUE
(linear unbiased estimate with minimum variance) regardless
whether the dynamical model or the observation operator are
linear and whether the forecast or observation errors are
Gaussian (Snyder, 2011). Note that conditional expectation of the
posterior pdf may have smaller error variance.
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Introduction (cont.)
In practice, however, the analysis error variance underestimates
the optimal analysis error variance estimated using an infinite
number of ensemble members (Sacher and Bartello, 2007).

Also, the sample covariance of forecast error P̃f is rank deficient
when K < n + 1, where K is the number of ensemble members
and n is the dimension of the state space. This implies that the
analysis increments can only belong to ran(P̃f ).

It follows that ensemble filtering can lead to filter divergence ,
where the magnitude of the true analysis error becomes much
larger than its estimate, as a result of the fact that observations
are progressively ignored by the filter.
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Observations and ensemble size
Another consequence of using a rank-deficient forecast error
covariance matrix is that at most K − 1 degrees of freedom are
available to ensemble-based data assimilation schemes in order
to fit the observations (Lorenc, 2003).

Observations that are sensitive to components of the state vector
that do not belong to the range of P̃f do not improve the analysis
estimate.

Localization procedures ease the rank-deficiency problem as the
localized P̃f is only supposed to represent the covariance of the
local forecast error.
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Observations and ensemble size (cont.)
The localization radius of influence should be large enough not to
disturb the balances that act at given spatial scales and that are
well represented by the ensemble error covariance (e.g., Lorenc,
2003).

The radius of influence should also be large enough to include
enough observations to constrain the analysis effectively. At the
same time, a radius of influence that is too large may not
substantially reduce the number of assimilated observations,
particularly over data-dense areas.

A data selection strategy based on the information content of the
measurements is here illustrated, which ensures that only the
observational components that are able to constrain the analysis
are assimilated using ensemble filtering techniques.
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Ensemble square-root filtering
Consider observation yo = H(xt) + ǫ

o with unit error covariance,
to determine estimate xa (analysis) of x. The analysis error
covariance Pa is related to the forecast error covariance Pf

according to the Kalman filter solution of the cycling problem for a
linear(ized) stochastic-dynamic system and given by

Pa = Pf − Pf HT (HPf HT + Im)−1HPf (1)

We now approximate Pf ,a with P̃f ,a ≡ X′f ,aX′f ,aT
, where

X′f ,a =
1

√
K − 1

(xf ,a
1 −xf ,a, xf ,a

2 −xf ,a, · · · , xf ,a
i −xf ,a, · · · , xf ,a

K −xf ,a)

(2)
The ensemble transform Kalman filter (ETKF, Bishop et al., 2001)
expresses X′a as

X′a = X′f T ∈ R
n×K (3)

where T ∈ R
K×K is the ensemble transform matrix, to be

determined.
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Ensemble square-root filtering (cont.)
To determine an expression for T, we define S̃ ∈ R

m×K as

S̃ =
1

√
K − 1

(H(xf
1)−H(xf ), · · · , H(xf

i )−H(xf ), · · · , H(xf
K )−H(xf ))

H(xf ) ≡
1
K

K
∑

i=1

H(xf
i ).

so that S̃S̃T ≃ HPf HT ≡ SST .

we can write

P̃a = X′f (IK − S̃T (S̃S̃T + Im)−1S̃)X′fT
. (4)
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Ensemble square-root filtering (cont.)
It is possible to express S̃ as S̃ = ẼΓ̃ṼT , where Ẽ ∈ R

m×m, Γ̃ ∈ R
m×K

and Ṽ ∈ R
K×K . In this way, we can write

P̃a = X′f Ṽ(ỸK ,p̃ + IK )−1ṼT X′fT (5)

where

Γ̃ =

(

Γ̃p̃ 0p̃×(K−p̃)

0(m−p̃)×p̃ 0(m−p̃)×(K−p̃)

)

(6)

and

ỸK ,p̃ ≡

(

Γ̃
2
p̃ 0p̃×(K−p̃)

0(K−p̃)×p̃ 0K−p̃

)

∈ R
K×K (7)

with p̃ = rank(S̃) ≤ min(K − 1, m). It follows that T can be written as

T = Ṽ(ỸK ,p̃ + IK )−1/2ṼT ∈ R
K×K (8)
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Information considerations
From 8 follows that error reduction due to informative obs is only
along the directions of the state space spanned by the p̃ right
singular vectors of S̃ with positive singular values. When S is
approximated by S̃ there are only p̃ ≤ min(m, K − 1)
measurements that provide information, i.e., with γ̃i > 0, so that
the effective number of degrees of freedom for signal d̃s resulting
from the use of a reduced-rank forecast error covariance can be
written as (Rodgers, 2000; D. Zupanski et al., 2007)

d̃s = tr(S̃T (S̃S̃T + Im)−1S̃) =

p̃
∑

i=1

γ̃2
i

1 + γ̃2
i

(9)

It follows that for a given number of ensemble members K , there
are at most K − 1 components of the measurement vector yo that
can provide information.
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Information considerations (cont.)
The importance of this consideration is that it is now possible to
decide whether a given observational component is worth
assimilating, according to whether one of these equivalent
conditions are met:

◮ its signal-to-noise ratio γ̃i is greater than about 1,
◮ its information content Hi = 1

2 log2(1 + γ̃2
i ) is greater than about 0.5

or
◮ it provides more than about half a degree of freedom for signal.

The effects of choosing different threshold values should be tested
(see later).

It follows that when m ≫ K , only the r < K leading singular values
and vectors of S̃ need to be determined for assimilation
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Data selection strategy
Let us define yo′ ∈ R

r as yo′ ≡ ẼT
r yo, where Ẽr ∈ R

m×r is the
matrix whose columns are the r left singular vectors
corresponding to the r positive singular values of S̃ that are
greater than about unity, with r ≤ p̃. We can write

yo′ = ẼT
r H(xt) + ẼT

r ǫ
o = H ′(xt) + ǫ

o′ (10)

where H ′(xt) ∈ R
r×n is defined as H ′(xt) ≡ ẼT

r H(xt). Note that the
covariance of ǫ

o′ is Ir , the unit matrix of rank r .

The analysis error covariance can now be written as

P̃a = X′f (IK − S̃′T (S̃′S̃′T + Ir )−1S̃′)X′fT (11)

where S̃′ ∈ R
r×K is defined as S̃′ ≡ ẼT

r S̃.
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Data selection strategy (cont.)
It follows that the analysis perturbation matrix can be written as

X′a = X′f Ṽ(ỸK ,r + IK )−1/2ṼT (12)

where ỸK ,r ∈ R
K×K is defined as

ỸK ,r ≡

(

Γ̃
2
r 0r×(K−r)

0(K−r)×r 0K−r

)

. (13)

The analysis ensemble mean can be calculated as

xa = xf + X′f S̃′T (S̃′S̃′T + Ir )−1(yo′′ − H′′xf ) (14)

= xf + X′f Ṽr Γ̃r (Γ̃
2
r + Ir )−1(yo′′ − H′′xf ). (15)

An analogous expression can be found for the ensemble Kalman
filter algorithm.
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Localization considerations
The data selection strategy presented here is compatible (and
should be used) with localization procedures for ensemble data
assimilation. When localization is used, the data selection
procedure will result in a further data reduction over the local
domain or over the domain where the compactly-supported
correlation function is different from zero.

Localization procedures over data-dense areas do not need to
restrict the magnitude of their ROI as a way to reduce the amount
of observations to be assimilated.

Appropriate dimension of the local domain from trade off between
the need of reducing the rank deficiency of the forecast error
covariance matrix for a given K and of avoiding shortening the
natural correlation length scales that may lead to unbalanced
initial conditions.
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Numerical experiments
Two-dimensional temperature advection model on a circle of
latitude. Zonal-only advection speed u(x, t) can be constant or
dependent on T (x, t) via the thermal wind equation.
Forward-upstream finite difference scheme. The zonal length of
the domain is 1000, with 43 vertical levels (0.1 – 1013.25 hPa),
150+ time steps (longer exp for nonlinear case).

Initial condition for the truth from random field with Gaussian
horizontal correlation function (σ2 = 20) and an exponential
vertical correlation with 50 km de-correlation length.

Initial conditions for the “background” trajectory are defined from
the same random field, but with expectation given by the true state
at initial time. The K members of the initial ensemble are then
created in a similar manner, with expectation given by the
background state.
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Assimilation strategy
Each initial condition propagated forward in time until observation
time, when an analysis scheme based either on a standard (e.g.,
Evensen, 2004, 2009) or on the data-selective ensemble
square-root method generates a new set of initial conditions.

Two sets of observations: a) 8 regularly-spaced vertical
temperature profiles with 43 elements; b) satellite radiances (66
channels) over 8 regularly-spaced locations; all at 5∆t
observation frequency.

All observations are simulated from the truth and zero-mean
random noise with given standard deviation. For temperature
profiles: σo

Tj
= 0.1%T f

j at initial time.
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Results without data selection
n = 1001 × 43 = 43043, K = 300, no localization, 43 × 8 = 344
obs every 5 ∆t , T = 120∆t
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Results with data selection
n = 1001 × 43 = 43043, K = 300, no localization, SNR > 1,
43 × 8 = 344 obs every 5 ∆t , T = 120∆t
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Results at a model level
SNR > 1 (left), all data (right), K = 300, no localization, ∼ 500
hPa
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RMSE
SNR > α (left), SNR > α − SNR > 0 (right), α = 0.1, 0.5, 1,
K = 300, no localization
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Data selection and ds ratio
SNR > α, α = 0.1, 0.5, 1, K = 300, no localization, 344 obs
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Remote sounding data
IASI temperature jacobians (66 channels), channel selection from
Collard (2007); noise stddev 0.22-0.37 K.
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Remote sounding data RMSE
SNR > 0.1 (left), SNR > 0.1 − SNR > 0 (right), K = 300, no
localization
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IASI data selection and ds ratio
SNR > 0.1, K = 300, no localization, 528 obs (66 × 8)

10 20 30 40 50 60 70 80 90100110120130140150
time

0

50

100

150

200

250

300

nu
mb

er 
of 

se
lec

ted
 da

ta 
(r)

10 20 30 40 50 60 70 80 90100110120130140150
time

0.0

0.2

0.4

0.6

0.8

1.0

da
ta 

se
lec

tio
n r

ati
o r

/m

10 20 30 40 50 60 70 80 90100110120130140150
time

0

50

100

150

200

250

300

nu
mb

er 
of 

ret
ain

ed
 de

gre
es

 of
 fre

ed
om

 fo
r s

ign
al

10 20 30 40 50 60 70 80 90100110120130140150
time

0.95

0.96

0.97

0.98

0.99

1.00

nu
mb

er−
of−

de
gre

es
−o

f−f
ree

do
m−

for
−s

ign
al 

rat
io

(a) (b)

(c) (d)

S. Migliorini (University of Reading) 24 / 31



Localization results with data selection
Temperature profiles, n = 1001 × 43 = 43043, K = 100,
SNR > 0.1, ROI=200
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Localization results: RMSE
Temperature profiles, SNR > 0.1 (left), SNR > 0.1 − SNR > 0
(right), K = 100, ROI=200
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Data selection rate
SNR > 0.1, K = 100, localization ROI=200
For ROI=200 and 125 obs separation, domain subdivided in 17
regions including either 129 (3 × 43) or 172 (4 × 43) obs

obs with SNR>0.1
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Results with nonlinear advection
n = 1001 × 43 = 43043, K = 300, no localization, 43 × 8 = 344
obs every 5 ∆t , T = 1000∆t
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Nonlinear advection results: RMSE
Temperature profiles, SNR > 0.1 (left), SNR > 0.1 − SNR > 0
(right), K = 300, no localization

K=300; nonlinear advection; SNR>0.1
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Data selection ratio: EnSRF v. EnKF
Nonlinear advection, SNR > 0.1, K = 300, no localization

γi>0.1
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Conclusions
An effective and physically-based method to address the
ensemble filtering shortcomings in the case when m ≫ K is
described.

Results with a temperature advection model when assimilating
remote sounding data using the data-selection procedure show
that it is possible to discard more than 75% of the components of
the observation vector without significantly affecting the accuracy
of the results. Only about 40% of the in situ data components are
retained for assimilation towards the end of the run, even at low
SNR thresholds.

Can be used with both in situ and remote sounding data, and it is
attractive for operational NWP applications with ensemble-based
or hybrid DA schemes as it may lead to more balanced initial
conditions at larger scales, over data-dense areas.

QJ paper under revision.
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