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Using climatology on sparse observational grids

What is the effect of the sparsity of observations?

The obvious: We don’t have much information

Overestimation of error covariances (exacerbated by finite ensemble
sizes) (Whitaker et al. 2009)
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Using climatology on sparse observational grids

What is the effect of the sparsity of observations?

The obvious: We don’t have much information

Overestimation of error covariances (exacerbated by finite ensemble
sizes) (Whitaker et al. 2009)

Applications are

sparse observational networks

balance

model error

controlling catastrophic filter divergence

Further applications are

re-analysis of climate

when direct observations are not available (mesosphere)

general slow-fast systems
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Sparse observational grids

Our particular perspective here:

Proper (noisy) observations are available for some variables (observables)
but not for other unresolved variables, for which only their statistical
climatic behaviour such as their variance and their mean is available
(pseudo-observables).

Question:

How can the statistical information available for some data which are
otherwise not observable, be effectively incorporated into data assimilation
to control overestimation?
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Assume an N -dimensional dynamical system whose dynamics is given by
ż = f(z) with the state variable z ∈ R

N (no model error for now).

observables

Observations xobs at observation times tn = n∆tobs

observation operator H : R
N → R

n

xobs(ti) = Hz(ti) + robs(ti) with observational noise robs

robs ∼ N (0,Robs) with error covariance matrix Robs
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Assume an N -dimensional dynamical system whose dynamics is given by
ż = f(z) with the state variable z ∈ R

N (no model error for now).

observables

Observations xobs at observation times tn = n∆tobs

observation operator H : R
N → R

n

xobs(ti) = Hz(ti) + robs(ti) with observational noise robs

robs ∼ N (0,Robs) with error covariance matrix Robs

pseudo-observables

Assume climatic knowledge about the pseudo-observables y (mean atarget

and variance Atarget)

pseudo-observation operator h : R
N → R

m

Rw is the unknown error covariance matrix associated with the
pseudo-observables
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Assume an N -dimensional dynamical system whose dynamics is given by
ż = f(z) with the state variable z ∈ R

N (no model error for now).

observables

Observations xobs at observation times tn = n∆tobs

observation operator H : R
N → R

n

xobs(ti) = Hz(ti) + robs(ti) with observational noise robs

robs ∼ N (0,Robs) with error covariance matrix Robs

pseudo-observables

Assume climatic knowledge about the pseudo-observables y (mean atarget

and variance Atarget)

pseudo-observation operator h : R
N → R

m

Rw is the unknown error covariance matrix associated with the
pseudo-observables

Question:

How do we choose/find the error covariance matrix Rw?
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The Variance Limiting Kalman Filter (VLKF)

An ensemble (Evensen, 1996) with k members zk

Z = [z1, z2, . . . , zk] ∈ R
N×k

is propagated by the full nonlinear dynamics

Ż = F (Z), Z(0) = Zb .

The ensemble is split into its mean z̄ and its ensemble deviation matrix Z′

Step 1: Forecast step

Zf = F (Zb)

Pf =
1

k − 1
Z′

f (t)[Z′
f (t)]T

Remark: Pf (t) is rank-deficient for k < N (N ∼ 109 and k ∼ 100)
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The Variance Limiting Kalman Filter (VLKF)

Step 2: Analysis step

J(z) =
1

2
(z − zf )TP−1

f (z − zf ) +
1

2
(Hz− Y)T R−1(Hz− Y)

Y =

(

xobs

atarget

)

,H =

(

H

h

)

,R−1 =

(

R−1
obs 0

0 R−1
w

)
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The Variance Limiting Kalman Filter (VLKF)

Step 2: Analysis step

J(z) =
1

2
(z − zf )TP−1

f (z − zf ) +
1

2
(Hz− Y)T R−1(Hz− Y)

Y =

(

xobs

atarget

)

,H =

(

H

h

)

,R−1 =

(

R−1
obs 0

0 R−1
w

)

z̄a = z̄f − K [Hzf − Y ]

where K = PfHT (HPfHT + R)−1

with the covariance of the analysis

Pa = [I − KH]Pf
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The Variance Limiting Kalman Filter (VLKF)

Step 2: Analysis step

Constraining the variance of the pseudo-observable hz is done by requiring

hPah
T = Atarget

Introducing Pa
−1 = P−1

f + HTR−1
obsH, we obtain

R−1
w = A−1

target −
(

hPah
T
)−1
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The Variance Limiting Kalman Filter (VLKF)

Step 2: Analysis step

Constraining the variance of the pseudo-observable hz is done by requiring

hPah
T = Atarget

Introducing Pa
−1 = P−1

f + HTR−1
obsH, we obtain

R−1
w = A−1

target −
(

hPah
T
)−1

The naive expectation Rw = Atarget is true only for
|{Robs,Pf}| ≫ |Atarget|
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The Variance Limiting Kalman Filter (VLKF)

Step 2: Analysis step

Constraining the variance of the pseudo-observable hz is done by requiring

hPah
T = Atarget

Introducing Pa
−1 = P−1

f + HTR−1
obsH, we obtain

R−1
w = A−1

target −
(

hPah
T
)−1

The naive expectation Rw = Atarget is true only for
|{Robs,Pf}| ≫ |Atarget|

For sufficiently small background error covariance Pf , the error
covariance Rw is not positive definite (“switch”):
Update only overestimating eigendirections with |hPah

T | > |Atarget|
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The Variance Limiting Kalman Filter (VLKF)

Step 3: Update of the ensemble

The ensemble needs to be consistent with

Pa =
1

k − 1
Z′

a

[

Z′
a

]T

Method of ensemble square root filters:

Ensemble transform Kalman filter (EnTKF) (Tippett et al 2003):
Z′

a = Z′
fSw with Sw ∈ R

k×k

Ensemble adjustment Kalman filter (EnAKF) (Anderson 2001):
Z′

a = AZ′
f with A ∈ R

N×N

Constraining overestimation of error covariances in ensemble Kalman filtersToulouse, November 13th 2012



The Variance Limiting Kalman Filter (VLKF)

Step 3: Update of the ensemble

The ensemble needs to be consistent with

Pa =
1

k − 1
Z′

a

[

Z′
a

]T

Method of ensemble square root filters:

Ensemble transform Kalman filter (EnTKF) (Tippett et al 2003):
Z′

a = Z′
fSw with Sw ∈ R

k×k

Ensemble adjustment Kalman filter (EnAKF) (Anderson 2001):
Z′

a = AZ′
f with A ∈ R

N×N

Step 4: Update of the forecast

Set Zb = Za to propagate the ensemble forward again with the full
dynamics to the next observation time

Constraining overestimation of error covariances in ensemble Kalman filtersToulouse, November 13th 2012



Summary of VLKF
Step 1: Forecast step

Zf = F (Zb)

Pf =
1

k − 1
Z

′

f (t)[Z′

f (t)]T

Step 2: Analysis step

z̄a = z̄f −Kobs(Hz̄f − xobs) − Kw(hz̄f − atarget)

Kobs = PfH
T (HPfH + Robs)

−1
, Kw = Pfh

T (hPfh + Rw)−1

R
−1
w = A

−1
target − (hPah

T )−1

Step 3: Update of the ensemble

The ensemble needs to be consistent with

Pa = [I− KobsH − Kwh] Pf =
1

k − 1
Z

′

a

ˆ

Z
′

a

˜T

Step 4: Update of the forecast

Set Zb = Za to propagate the ensemble forward again with the full dynamics to the
next observation time.
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I. Lorenz-96 model: żi = zi−1 (zi+1 − zi−2) − zi + F

The pseudo-observables contain the prior climatic knowledge:
atarget = µclim and Atarget = σ2

climI with µclim = 2.34 and σclim = 3.6
measured from a long time trajectory
Nobs = 5, ∆tobs = 4 hours, Robs = (0.25σclim)2I
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I. Lorenz-96 model

Quantify the skill improvement by the r.m.s error

E =

√

√

√

√〈
1

LD

L
∑

l=1

‖z̄a(l∆tobs) − ztruth(l∆tobs)‖2〉

Skill: S = EE

EV

Best performance of VLKF
over ETKF for:

small ∆tobs

Nobs = 4

1 2 3 4 5 6 7 8 9 10

1

1.4

1.8

2.2

2.6

∆tobs

S

 

 
N

obs
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N
obs
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N
obs
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N
obs
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I. Lorenz-96 model

VLKF produces significant skill in sparse observational grids for

small observation intervals (< 6 hours)

the larger the observational noise the better
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I. Lorenz-96 model

VLKF produces significant skill in sparse observational grids for

small observation intervals (< 6 hours)

the larger the observational noise the better

40 60 80 100 120 140
12.5

13

13.5

14

k

m
a
x
(s

v
d
(h

P
a
h

T
))

The overestimation of error covariances in sparse networks is a finite
ensemble size effect
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II. Filter divergence and blow-up with sparse observations

(traditional) filter divergence: Underestimation of error covariance leads to

filter trusting its own forecast for sufficiently large Robs (cf. Ng et al (2011))
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II. Filter divergence and blow-up with sparse observations

(traditional) filter divergence: Underestimation of error covariance leads to

filter trusting its own forecast for sufficiently large Robs (cf. Ng et al (2011))

catastrophic filter divergence: Filter develops machine-infinity blow-up for

sufficiently small Robs (Harlim & Majda (2010); GAG, Mitchell, Reich (2011))

ETKF

VLKF

Nobs

6 0.14 x x 0.98 0.96 0.76 0.32 0.05 0.02 0.01
5 0.02 0.40 0.67 0.73 0.84 0.89 0.94 0.82 0.49 0.19
4 0 0.04 0.22 0.29 0.49 0.64 0.77 0.83 0.89 0.82
3 0 0 0 0.03 0.04 0.11 0.15 0.44 0.58 0.67
2 0 0 0 0 0 0.01 0 0.01 0.05 0.15
1 0 0 0 0 0 0 0 0 0 0

3 h 6 h 9 h 12 h 15 h 18 h 21 h 24 h 27 h 30 h
∆τobs

Nobs

6 0.01 0.42 0.11 0.01 0 0 0 0 0 0
5 0 0.24 0.36 0.10 0.01 0 0 0 0 0
4 0 0.03 0.22 0.12 0.06 0.02 0 0 0 0
3 0 0 0 0.02 0 0.01 0.01 0.01 0 0
2 0 0 0 0 0 0 0 0 0 0.01
1 0 0 0 0 0 0 0 0 0 0

3 h 6 h 9 h 12 h 15 h 18 h 21 h 24 h 27 h 30 h
∆τobs
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II. Genesis of blow-up

We study the 5D Lorenz-96 model

żi = zi−1(zi+1 − zi−2) − zi + F i = 1, · · · , 5

with negative forcing F = −16

Lyapunov exponents: λ = (2.72, 0.09,−0.09,−1.83,−5.89)

Attractor dimension: Dattr = 4.15

Decay rate of the autocorrelation: τcorr ≈ 0.14
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II. Genesis of blow-up
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II. Genesis of blow-up
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Finite size effects: Ensemble dimension (Patil et al (2001))

Dens =

“

Pk

i=1

√
µi

”2

Pk

i=1
µi

∈ (1, min(k, D))

where µi are eigenvalues of the k × k covariance matrix

C = X
T
f Xf
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II. Genesis of blow-up
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blow-up for t > 13

Finite size effects: Ensemble dimension (Patil et al (2001))

Dens =

“

Pk

i=1

√
µi

”2

Pk

i=1
µi

∈ (1, min(k, D))

where µi are eigenvalues of the k × k covariance matrix

C = X
T
f Xf

Filter pushes analysis off the attractor

z̄a,i = z̄f,i −
Pf i1

Pf 11
+ Robs

[z̄f,i − xobs]

Lyapunov exponents
λ = (2.72, 0.09,−0.09,−1.83,−5.89)
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II. Filter divergence and blow-up with sparse observations

Blow-up is caused by the forecast scheme (numerical instability):
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Take home message:
Catastrophic blow up may be caused by the combination of finite size
ensembles and fast attraction towards the attractor when

there are sparse but accurate observations

the underlying system has high variance
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III. Controlling balance

Modified Lorenz-96 system (Bergemann & Reich (2010))

ẋj = (1 − η) (xj−1(xj+1 − xj−2)) − xj + F

+ η (xj−1hj+1 − xj−2hj−1)

ε2ḧj = −hj + α2 (hj−1 − 2hj + hj+1) + xj

fast part is purely dispersive

nonlinear terms conserve energy

H = η
2

∑D
j=1

(

η−1
η

x2
j + ǫ2ḣ2

j + h2
j + α2(hj+1 − hj−1)

2 − 2xjhj

)

approximate slow manifold given by
Bj(xj , hj) = xj −

(

hj − α2 (hj−1 − 2hj + hj+1)
)

= 0

Constraining overestimation of error covariances in ensemble Kalman filtersToulouse, November 13th 2012



III. Controlling balance

Initially balanced fields with
Bj(xj , hj) = xj −

(

hj − α2 (hj−1 − 2hj + hj+1)
)

= 0
do not develop unbalanced motion on very long times:
The amount of unbalance (fast energy) can be measured by

B̄(t) =

√

√

√

√

1

D

D
∑

j=1

(xj − hj + α2 (hj−1 − 2hj + hj+1))
2
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III. Controlling balance

The filtering procedure can severely disturb balance (cf. Lorenc (2003),

Kepert (2009), Greybush et al (2011)) - this is the case with and without
localization in sparse observational networks
Here only x is observed with Nobs = 2 with h = B and atarget = 0
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III. Controlling balance

The filtering procedure can severely disturb balance (cf. Lorenc (2003),

Kepert (2009), Greybush et al (2011))- this is the case with and without
localization in sparse observational networks
Here only x is observed with Nobs = 2 with h = B and atarget = 0
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IV. Model error and forecast bias

A major problem of ensemble filters is underdispersiveness (Buizza et al

2005).
This can be linked to

dynamical model error: misrepresentation of unresolved subgrid scale
processes (Palmer 2001)
numerical model error: large errors produced at grid-scale (overesti-
mation) which are controlled by artificial viscosity (underestimation)
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IV. Model error and forecast bias

A major problem of ensemble filters is underdispersiveness (Buizza et al

2005).
This can be linked to

dynamical model error: misrepresentation of unresolved subgrid scale
processes (Palmer 2001)
numerical model error: large errors produced at grid-scale (overesti-
mation) which are controlled by artificial viscosity (underestimation)
but

◮ unrealistic drainage of energy out of the system (Shutts 2005)
◮ frontogenesis (Blumen 1990)
◮ large scale statistics depends on the numerically preserved conservation

laws (Thuburn 2008, Dubinkina & Frank 2007, 2010)
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IV. Model error and forecast bias

A major problem of ensemble filters is underdispersiveness (Buizza et al

2005).
This can be linked to

dynamical model error: misrepresentation of unresolved subgrid scale
processes (Palmer 2001)
numerical model error: large errors produced at grid-scale (overesti-
mation) which are controlled by artificial viscosity (underestimation)
but

◮ unrealistic drainage of energy out of the system (Shutts 2005)
◮ frontogenesis (Blumen 1990)
◮ large scale statistics depends on the numerically preserved conservation

laws (Thuburn 2008, Dubinkina & Frank 2007, 2010)

Main question: Can one get away with underdamped forecast models, yet
still control the resulting covariance overestimation within the data

assimilation procedure?
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IV. Model error and forecast bias

A major problem of ensemble filters is underdispersiveness (Buizza et al

2005).
This can be linked to

dynamical model error: misrepresentation of unresolved subgrid scale
processes (Palmer 2001)
numerical model error: large errors produced at grid-scale (overesti-
mation) which are controlled by artificial viscosity (underestimation)
but

◮ unrealistic drainage of energy out of the system (Shutts 2005)
◮ frontogenesis (Blumen 1990)
◮ large scale statistics depends on the numerically preserved conservation

laws (Thuburn 2008, Dubinkina & Frank 2007, 2010)

Main question: Can one get away with underdamped forecast models, yet
still control the resulting covariance overestimation within the data

assimilation procedure?

We will use climatological information of the mean and variance
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IV. Model error and forecast bias

dzi

dt
= zi−1(zi+1 − zi−2) − γzi + F

Truth: γ = 1
Forecast model: γ < 1

Perfect model case: S ≈ 1 for ∆tobs ≫ 1
Now we will be interested in the case of ∆tobs ≫ 1
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IV. Model error and forecast bias

γ = 0.5
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IV. Model error and forecast bias

Reproducing the statistics
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IV. Model error and forecast bias

We consider performance over standard ETKF

S =
EE

EV
,

and over using the “poor man’s” analysis of observations and climatology

ŜE =
Ê
EE

, ŜV =
Ê
EV

.
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IV. Model error and forecast bias

We consider performance over standard ETKF
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, ŜV =
Ê
EV

.
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Trade-off: The smaller γ, the better skill over ETKF, but the less skill
compared with “poor man’s” analysis

Constraining overestimation of error covariances in ensemble Kalman filtersToulouse, November 13th 2012



Summary

We have here

derived a variance limiting Kalman filter (VLKF) which adaptively
damps unrealistic excitation of ensemble spread in underresolved
regions

applied this filter to a sparse observational grid
◮ has better skill than ETKF for small (≤ 6h) observation times
◮ has better skill for observables and pseudo-observables

proposed a mechanism for blow-up filter divergence

applied this filter to control balance
◮ has better skill than DEnKF and controls unbalance

applied this filter to model error (underdamping)
◮ has better skill than ETKF for large observation intervals (≥ 36h)
◮ trade-off between superior skill over ETKF and being better than

observations/climatology

(GAG, Mitchell & Reich, MWR 2011; Mitchell & GAG, QJRMS 2012, in press)
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Lorenz-96 model

How is the skill distributed over
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Lorenz-96 model

Dependency on observational noise level Robs = (η σclim)2 I, Nobs = 4
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Constraining the covariances produces more reliable ensembles – even in the case
when there is no skill improvement with S = 1

Ranked probability histograms for the observables

sort the forecast ensemble Xf = [xf,1, xf,2, ..., xf,k] and create bins
(−∞, xf,1], (xf,1, xf,2], ... , (xf,k,∞) at each forecast step

increment whichever bin the actual truth falls into at each forecast step

Convex histogram: underestimating ensemble
Concave histogram: overestimating ensemble
Flat histogram: reliable ensemble for which each ensemble member has equal
probability of being nearest to the truth

γ = 0.5 and ∆tobs = 48hrs
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Lorenz-96 model

There is an order of magnitude difference between the RMS errors for the observables
and the pseudo-observables for large Nobs. This suggests that the information of the
observed variables does not travel too far away from the observational sites.

Total RMS error for each site i,
i = 1, 2, · · · , 40 if only site i⋆ = 21 is

observed.
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Remark:The advective time scale of the Lorenz-96 system is much smaller than ∆tobs

which explains why the skill is not equally distributed over the sites, and why, especially

for large values of Nobs we observe a big difference between the site-averaged skills of

the observed and unobserved variables.
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Application: Model error and forecast bias

Pf :
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Application: Model error and forecast bias

Pf :
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increased sparsity and model error lead to overestimation
covariances of observables are also limited for VLKF
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Distribution of RMS error over observables and pseudo-observables
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Distribution of RMS error over observables and pseudo-observables
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pseudo-observables

VLKF outperforms ETKF with
increasing model error γ and
increasing sparsity Nobs

VLKF becomes less effective
compared to poor man’s analysis with
increasing model error γ and
increasing sparsity Nobs

issue of overestimation
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Distribution of RMS error over observables and pseudo-observables

0 0.2 0.4 0.6 0.8 1

3.4

3.6

3.8

4

4.2

Euo

γ
0 0.2 0.4 0.6 0.8 1

3.4

3.6

3.8

4

4.2

γ
0 0.2 0.4 0.6 0.8 1

3.4

3.6

3.8

4

4.2

γ

0 0.2 0.4 0.6 0.8 1

0.9

0.95

1

1.05

Eo

γ
0 0.2 0.4 0.6 0.8 1

0.9

0.95

1

1.05

γ
0 0.2 0.4 0.6 0.8 1

0.9

0.95

1

1.05

γ

Nobs = 3 Nobs = 4 Nobs = 8
(ETKF/VLKF)

(∆tobs = 48 hours)

pseudo-observables

VLKF outperforms ETKF with
increasing model error γ and
increasing sparsity Nobs

VLKF becomes less effective
compared to poor man’s analysis with
increasing model error γ and
increasing sparsity Nobs

issue of overestimation

observables

ETKF outperforms VLKF for
decreasing model error and decreasing
sparsity

ETKF performs worse than poor
man’s analysis for small model error

convergence of ETKF andVLKF to
E⋆

o <
√

Robs for sufficiently large
model error

issue of underestimation
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Dependency of skill on observation noise Robs = (ησclim)2
I
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VLKF outperforms ETKF and the
poor man’s analysis for sufficiently
large observational noise since large
noise gives more preference to the
pseudo-observables which are
controlled by the VLKF

trade-off between skill over ETKF and
efficacy over poor man’s analysis with
increasing model error
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Application: Model error and forecast bias

How is the RMS error distributed over the observables and the
pseudo-observables (∆tobs = 48hrs)?
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Model Error

Dependency of skill on sparsity Nobs
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Climatic

Dependence of climatic mean (left) and variance (right) on damping
parameter γ. As well as the climatic variance (black, circles, solid) we
show the average variance calculated over forecast intervals ∆tobs = 12

hours (red, squares, dotted), ∆tobs = 24 hours (green, triangles,
dash-dotted) and ∆tobs = 48 hours (blue, crosses, dashed).
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Overestimation of forecast error covariance

Finite size ensemble sizes can lead to

underestimation of diagonal elements of the forecast error covariance Pf

overestimation of off-diagonal elements of the forecast error covariance Pf

To control off-diagonal terms one uses localization (Houtekamer and Mitchell (1998)), for
example

Pf → Cloc ◦ Pf

Can VLKF act as a form of localization?
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Overestimation of forecast error covariance

Finite size ensemble sizes can lead to

underestimation of diagonal elements of the forecast error covariance Pf

overestimation of off-diagonal elements of the forecast error covariance Pf

To control off-diagonal terms one uses localization (Houtekamer and Mitchell (1998)), for
example

Pf → Cloc ◦ Pf

Can VLKF act as a form of localization?
2-d example z = (x, y) where only x is observed:

Kloc =
1

Pf11
+ R

„

Pf11
Cloc21Pf21

«

KV LKF = KV LKF (Rw):

Rw → ∞: KV LKF → 1
Pf 11

+R

„

Pf 11
0

Pf 21
0

«

Rw → εRw, R → 1
ε
R: KV LKF →

0

@

ε ϑ
Pf 22

R

Pf 12

Pf 22

ε2 Pf 12

Pf 22

Rw

R
1

1

A with ϑ = det(Pf )
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