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Objective and outline

Objective

Emulation of an Ensemble Kalman Filter (EnKF) algorithm to allow
for the use of data assimilation in the context of operationnal �ood
forecasting with a low computationnal cost.

1 Advection-di�usion model and random forcing

2 Water level covariance functions without observations : theory
versus ensemble computation

3 Impact of the assimilation on the water level covariance
functions : towards the emulation of the EnKF
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Model equations and boundary conditions

The 1D advection-di�usion equation



∂h
∂t + c∂h∂x = κ∂

2h
∂x2 ,

∀(x, t) ∈ [0, L]× R+

h(x, 0) = h0(x) , x > 0
h(0, t) = hup(t)
∂h
∂t (L, t) + c∂h∂x(L, t) = 0

Inclined channel with free surface

• h denotes the Water Level Anomaly (WLA) : perturbation to
the equilibrium state hm ;

• hup is a random water level ;

• Models the shallow-water equations when the slope is
important ;
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The upstream forcing hup

Construction of the upstream forcing

hup(t) is a random variable with gaussian statistics and gaussian

temporal covariance function ρ(δt) = q2me
− δt2

2τ2 where :

• τ is the correlation time scale ;

• q2m is the variance ;

Under mathematical considerations one can write :

hup(t) =
∫

R
ζω
√
ρωe
−iωtdω (1)

where ρω = τ√
2π
q2me

−ω
2τ2

2 and the ζω follow the

normal distribution N (0, 1), are uncorrelated and ζω = ζ∗−ω ;
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Illustration of the upstream forcing hup

The model equation and the upstream boundary condition{
∂h
∂t + c∂h∂x = κ∂

2h
∂x2 , ∀(x, t) ∈ [0, L]× R+

h(0, t) = hup(t) ∀t > 0

An upstream forcing with its corresponding propagated WLA

Random upstream forcing Corresponding WLAs
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Study of the covariance function of h without assimilation
Covariance function of h

Σ(x, x+ δx) = 〈h(x)h∗(x+ δx)〉

The case of advection only (κ = 0)

The covariance function reads : Σ(x, x+ δx) = Σme
− δx2

2L2
p(0)

• Constant correlation length scale : Lp(0)
• Constant variance : Σm = q2m

The case of advection and small di�usion (κ� cx)

An asymptotic expansion leads to : Σ(x, x+ δx) ≈ Σm(x)e
− δx2

2L2
p(x)

• Correlation length scale : Lp(x) =
√
L2
p(0) + 4κxc

• Variance : Σm(x) = q2m
Lp(0)
Lp(x)
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Covariance functions for the upstream forcing and the WLA
Approximation of the covariance matrix with an ensemble method

• Discretisation of the WLA in n = 200 grid points,

Xk = (hk1, . . . , h
k
n)

• The covariance matrix of the WLA is approximated by :

Be = 1
N

∑N
k=1(Xk −X)(Xk −X)T N = 10000

Covariance functions for the upstream forcing and the WLA

Temporal covariance functions Spatial covariance functions
for the upstream forcing for the WLA for x = 50km,
for t = 500s, 1000s, 1500s x = 100km, 150km
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Validation of the analytical results with an ensemble method
Diagnosis of the variance and the correlation length

• The variance Σm is the maximum
of the gaussian ;

• The correlation length scale is the
distance for which the second order
Taylor expansion of the correlation
function is equal to 1/2 ;

Variance Correlation length scale
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Data assimilation chain for Kalman Filter algorithm (KF)
Discretisation of the WLA in n = 200 grid points,

Xi = (hi1, . . . , h
i
n)

Analysis step at assimilation cycle i

Update of the state vector : Xa
i = Xb

i + Ki(Yo
i −HXb

i) where :

• Xa
i and Xb

i are the analysis and the background ;

• Ki = BiHT (HBiHT + R)−1 is the gain matrix ;

• Bi is the background error covariance matrix ;

• H is the observation operator ;

• R is the observation error covariance matrix ;

• Yo
i is a synthetic observation generated from the true state by

adding an error following N (0, σ2
o)

Update of the analysis error covariance matrix : Ai = (I−KiH)Bi

where I is the identity matrix
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Data assimilation chain for Kalman Filter algorithm
Propagation step from cycle i to cycle i+ 1

• Propagation of the state vector : Xb
i+1 =Mi,i+1Xa

i

• Propagation of the background error covariance matrix :

Bi+1 = Mi,i+1AiMT
i,i+1

where Mi,i+1 is the tangent linear of the model.

• When Bi is not propagated we talk of a sequence of Best
Linear Unbiased Estimator (BLUE)

From the Kalman Filter to the Ensemble Kalman Filter

• Propagation of Bi with the KF algorithm is costly and requires
the computation of the tangent linear of the model.

• Problem to de�ne a relevant error on the upstream forcing
with the KF.

• An ensemble approach is then prefered to compute Bi and
de�ne easily an error on the upstream forcing.
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Derived algorithms from the assimilation chain

Derived algorithms

Algorithms derived from the data assimilation chain :

• EnKF where Bi = BEnKF,i is updated at each observation ;

• EnBLUE where Bi = Be remains constant and is computed
without assimilation ;

• EEnKF where Bi = BEnKF remains constant and is the
converged matrix from the EnKF ;

The question is ...

Can we use an algorithm where Bi is constant (EnBLUE or
EEnKF) instead of an algorithm that requires the propagation of all
the members to update Bi at each assimilation cycle (EnKF) ?
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Assimilation scheme for the EnKF

BEnKF,i is updated at each observation with an ensemble method :

BEnKF,i = 1
N

∑N
k=1(Xb,k

i −Xi)(X
b,k
i −Xi)T N = 10000

The analysis error covariance matrix computed after the last
assimilation cycle is called BEnKF .
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Assimilation scheme for the EnBLUE and the EEnKF

Bi is constant, it is either Be (EnBLUE) or BEnKF (EEnKF).
The analysis error covariance matrix computed after the last
assimilation cycle is called BEnBLUE (EnBLUE) or BEEnKF

(EEnKF)
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Data Assimilation Results - Part I
Impact of the assimilation on the correlation length

Correlation functions Correlation length
at the observation point over the domain

• The correlation function at the observation point turns into an
anisotropic function with a shorten correlation length
downstream ;
• In the case of the EnKF and EEnKF the reduction of
correlation length is propagated downstream by the dynamics
of the model whereas it is just local with the EnBLUE ;
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Data Assimilation Results - Part II

Impact of the assimilation on the variance and the WLA

Variance WLA over the domain

• BEnKF and BEEnKF provide the same results in terms of
variance and WLA with the same upstream forcing whereas in
the case of BEnBLUE the reduction of variance and the
correction of the WLA are just local round the observation
point ;
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Emulation of the EnKF algorithm

• EnKF and EEnKF provide the same result for the correlation
length scale, the variance and the analysed WLA ;

• Design of an algorithm derived from the EEnKF : sequence of
BLUE using BEnKF with only one member ;

• Reduction of the computationnal cost allowing for the use of
data assimilation in the context of real-time �ood forecasting ;
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Conclusions and further work

Conclusions

• Theoretical and numerical study of the covariance of the
propagated water level signal without assimilation ;

• The assimilation of water level observations has an impact on
the correlation length scale and improves the results in terms
of variance and WLA in the case of the EnKF and the EEnKF
algorithms ;

• The use of a matrix computed with assimilation in a sequence
of BLUE algorithm allows for the emulation of the EnKF
algorithm and the use of data assimilation in the context of
�ood forecasting ;

Further work

Modelling of the matrix BEnKF without computing the EnKF
algorithm using a di�usion operator with a di�erent observation
network.

CERFACS/URA1875 () Emulation of an Ensemble Kalman Filter Algorithm November 13th 2012 23 / 23


	Advection-diffusion model and random forcing
	Water level covariance functions without observations : theory versus ensemble computation
	Impact of the assimilation on the water level covariance functions : towards the emulation of the EnKF
	Data assimilation chain and algorithms
	Data assimilation results
	Emulation of the EnKF algorithm


