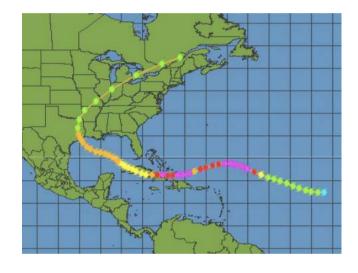
Robust Ensemble Filtering With Improved Storm Surge Forecasting

U. Altaf, T. Buttler, X. Luo, C. Dawson, T. Mao, <u>I.Hoteit</u>

Meteo France, Toulouse, Nov 13, 2012

- Ensemble data assimilation for storm surge forecasting
- Joint project with Clint Dawson group – ICES, UT Austin
- Area of interest: "Gulf of Mexico"



 Goal: develop and implement a fully parallel nonlinear/ensemble filtering system for efficient storm surge forecasting

Motivations

- We implemented a variety EnKFs with ADCIRC with quite reasonable and comparable performances
- All filters exhibit some weakness during the surge associated with the change of regime: KFs are not well designed for such systems (Bennett, 2002; Hoteit et al., 2002):
 - > Look for ways to improve EnKFs during the surge
 - Give some sense to the "inflation trick" we are using in EnKFs

Intro: Bayesian vs. Robust Filtering

- Bayesian filters update a prior with Bayes' rule to determine posterior, e.g. KFs, EnKFs, PFs, ... Estimates are based on the minimum variance criterion
- All these filters make some assumptions on the statistical properties of the system, but these are often poorly known
- No guaranty that the RMS errors of these filters are "bounded", even though they are in some sense optimal
- Given all sources of poorly known uncertainties in the system, we opt for using a <u>robust</u> instead of an <u>optimal</u> criterion

Problem Formulation

Consider the linear data assimilation problem

$$\begin{bmatrix} \mathbf{x}_{i} = \mathcal{M}_{i,i-1} \left(\mathbf{x}_{i-1} \right) + \mathbf{u}_{i} \\ \mathbf{y}_{i} = \mathcal{H}_{i} \left(\mathbf{x}_{i} \right) + \mathbf{v}_{i} \end{bmatrix}$$

- \mathbf{x}_i system state at time *i*
- $\circ \; \mathcal{M}_{i,i-1} \;$ transition matrix
- \mathbf{y}_i measurement of x_i
- $\circ \mathcal{H}_i$ Observation matrix
- \circ \mathbf{u}_i dynamical and \mathbf{v}_i observation Gaussian noise

Problem

• We are interested in estimating some linear combinations of the system states $\mathbf{z}_0^a, \cdots, \mathbf{z}_N^a$

$$\mathbf{z}_i = \mathbf{L}_i \mathbf{x}_i$$

given available observations

- If L_i the identity matrix, then the problem reduces to the estimation of the system state at every time
- **Two ways to deal with this problem:**
 - \checkmark Direct estimation of \mathbf{z}_i
 - \checkmark Indirect estimation: first estimate \mathbf{x}_i then deduct \mathbf{z}_i

Kalman Filter Optimality

 The KF optimality is based on the minimum variance estimate

$$J_{z}^{KF}(\mathbf{z}_{0}^{a},\cdots,\mathbf{z}_{N}^{a}) = \sum_{i=0}^{N} J_{z,i}^{KF} = \sum_{i=0}^{N} \mathbb{E} \|\mathbf{z}_{i} - \mathbf{z}_{i}^{a}\|_{2}^{2}$$

where

- $\circ \mathbb{E}$ is the expectation operator
- $\circ \mathbf{z}_i$ is the truth
- $\circ \mathbf{z}_i^a$ is the posterior estimate
- > KF solves the minimization problem sequentially

Kalman Filter (KF)

For <u>linear Gaussian systems</u>, the Bayesian filter reduces to the KF which updates the mean and the covariance of the *pdf* as follows

Prediction Step
$$\begin{bmatrix}
 \mathbf{x}_{i}^{b} = \mathcal{M}_{i,i-1} \, \mathbf{x}_{i-1}^{a}, \\
 \mathbf{P}_{i}^{b} = \mathcal{M}_{i,i-1} \, \mathbf{P}_{i-1}^{a} \, \mathcal{M}_{i,i-1}^{T} + \mathbf{Q}_{i}. \\
 \mathbf{P}_{i}^{a} = \mathbf{x}_{i}^{b} + \mathbf{K}_{i} \left(\mathbf{y}_{i} - \mathcal{H}_{i} \mathbf{x}_{i}^{b}\right), \\
 \mathbf{R}_{i}^{a} = \mathbf{R}_{i}^{b} - \mathbf{K}_{i} \mathcal{H}_{i} \mathbf{P}_{i}^{b}, \\
 \mathbf{P}_{i}^{a} = \mathbf{P}_{i}^{b} - \mathbf{K}_{i} \mathcal{H}_{i} \mathbf{P}_{i}^{b}, \\
 \mathbf{K}_{i} = \mathbf{P}_{i}^{b} \mathcal{H}_{i}^{T} (\mathcal{H}_{i} \mathbf{P}_{i}^{b} \mathcal{H}_{i}^{T} + \mathbf{R}_{i})^{-1}$$

,

H_{∞} Optimality

 First recognize that the sources of uncertainties are in the initial conditions, the model and the observations, so the *"total energy of uncertainties"* at a given time is

$$\|\mathbf{x}_i - \mathbf{x}_i^b\|_{(\mathbf{\Delta}_i^b)^{-1}}^2 + \|\mathbf{u}_i\|_{\mathbf{Q}_i^{-1}}^2 + \|\mathbf{v}_i\|_{\mathbf{R}_i^{-1}}^2$$

- Δ₀, Q_i, R_i are "uncertainty weight matrices", and they are user-defined by design
- Per analogy to Kalman filtering, we consider them as the errors covariance matrices.

H_{∞} Optimality

■ H_∞ requires that the "energy" in estimation error to be less than the total energy of uncertainties in the system $\|\mathbf{z}_i - \mathbf{z}_i^a\|_{\mathbf{S}_i}^2 \leq \frac{1}{\gamma_i} \left(\|\mathbf{x}_i - \mathbf{x}_i^b\|_{(\mathbf{\Delta}_i^b)^{-1}}^2 + \|\mathbf{u}_i\|_{\mathbf{Q}_i^{-1}}^2 + \|\mathbf{v}_i\|_{\mathbf{R}_i^{-1}}^2 \right)$

> S_i is another user-defined weight matrix

W

To solve this problem, consider the cost function

$$\begin{split} J_{z,i}^{HF} &= \frac{\|\mathbf{z}_i - \mathbf{z}_i^a\|_{\mathbf{S}_i}^2}{\|\mathbf{x}_i - \mathbf{x}_i^b\|_{(\mathbf{\Delta}_i^b)^{-1}}^2 + \|\mathbf{u}_i\|_{\mathbf{Q}_i^{-1}}^2 + \|\mathbf{v}_i\|_{\mathbf{R}_i^{-1}}^2} \\ \text{e require } J_{z,i}^{HF} &\leq \frac{1}{\gamma_i} \end{split}$$

H_{∞} Optimality

• Optimality of H_{∞} is achieved when $1/\gamma_i^*$ is "minimax point"

$$\frac{1}{\gamma_i} = \frac{1}{\gamma_i^*} \equiv \inf_{\mathbf{z}_i^a} \sup_{\mathbf{x}_i, \mathbf{u}_i, \mathbf{v}_i} J_{z,i}^{HF}$$

i.e. the minimum cost in the worst possible case

Because it is difficult to evaluate γ_i^* , we choose γ_i $\frac{1}{\gamma_i^*} \leq \frac{1}{\gamma_i}$

This guarantees existence of an H_{∞} solution (Simon, 2006)

$$\sum_{i=0}^{N} \|\mathbf{z}_{i} - \mathbf{z}_{i}^{a}\|_{\mathbf{S}_{i}}^{2} \leq \max_{i} \{\frac{1}{\gamma_{i}}\} \left(\sum_{i=0}^{N} \|\mathbf{x}_{i} - \mathbf{x}_{i}^{b}\|_{(\mathbf{\Delta}_{i}^{b})^{-1}}^{2} + \sum_{i=0}^{N} \|\mathbf{u}_{i}\|_{\mathbf{Q}_{i}^{-1}}^{2} + \sum_{i=0}^{N} \|\mathbf{v}_{i}\|_{\mathbf{R}_{i}^{-1}}^{2} \right)$$

The H_{∞} Filter (HF)

□ H_∞ filter updates a prior estimate to its posterior based on the minimax criterion as follows (Simon 2006)

Prediction Step
$$\begin{cases} \mathbf{x}_{i}^{b} = \mathcal{M}_{i,i-1} \mathbf{x}_{i-1}^{a}, \\ \mathbf{\Delta}_{i}^{b} = \mathcal{M}_{i,i-1} \mathbf{\Delta}_{i-1}^{a} \mathcal{M}_{i,i-1}^{T} + \mathbf{Q}_{i}. \\ \mathbf{\Delta}_{i}^{b} = \mathcal{M}_{i,i-1} \mathbf{\Delta}_{i-1}^{a} \mathcal{M}_{i,i-1}^{T} + \mathbf{Q}_{i}. \\ \end{cases}$$
Analysis Step
$$\begin{cases} \mathbf{x}_{i}^{a} = \mathbf{x}_{i}^{b} + \mathbf{G}_{i} \left(\mathbf{y}_{i} - \mathcal{H}_{i} \mathbf{x}_{i}^{b} \right) \\ (\mathbf{\Delta}_{i}^{a})^{-1} = (\mathbf{\Delta}_{i}^{b})^{-1} + (\mathcal{H}_{i})^{T} (\mathbf{R}_{i})^{-1} \mathcal{H}_{i} - \gamma_{i} \mathbf{L}_{i}^{T} \mathbf{S}_{i} \mathbf{L}_{i}, \\ \mathbf{G}_{i} = \mathbf{\Delta}_{i}^{a} \mathcal{H}_{i}^{T} (\mathbf{R}_{i})^{-1}, \end{cases}$$
subject to

$$(\boldsymbol{\Delta}_{i}^{a})^{-1} = (\boldsymbol{\Delta}_{i}^{b})^{-1} + (\mathcal{H}_{i})^{T}(\mathbf{R}_{i})^{-1}\mathcal{H}_{i} - \gamma_{i}\mathbf{L}_{i}^{T}\mathbf{S}_{i}\mathbf{L}_{i} \geq 0.$$

11

HF vs. KF

- □ $\|\mathbf{z}_i \mathbf{z}_i^a\|_{\mathbf{S}_i}^2$ is bounded above by some finite value in HF. This is not necessarily true for KF!
- If $\gamma_i = 0$ then the HF reduces to KF
- **The choice of L_i affects the estimate of HF, but not KF**
- HF is more conservative; it tends to make its analysis uncertainties larger than that of the KF

$$(\boldsymbol{\Delta}_i^a)^{-1} = (\boldsymbol{\Sigma}_i^a)^{-1} - \gamma \mathbf{L}_i^T \mathbf{S}_i \mathbf{L}_i < (\boldsymbol{\Sigma}_i^a)^{-1}$$

KF is expected to perform better if system statistics are well known, but HF should be more "robust"

EnHF: A Hybrid HF - EnKF

- □ HF can be based on any EnKF, stochastic or deterministic
- □ The idea is to first use an EnKF to compute the uncertainty matrix $\sum_{i=1}^{a} satisfying$

$$(\boldsymbol{\Sigma}_i^a)^{-1} = (\boldsymbol{\Delta}_i^b)^{-1} + (\mathcal{H}_i)^T (\mathbf{R}_i)^{-1} \mathcal{H}_i$$

then "inflate" $\sum_{i=1}^{a} \sum_{i=1}^{a} \sum_{j=1}^{a} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$

$$(\boldsymbol{\Delta}_{i}^{a})^{-1} = (\boldsymbol{\Sigma}_{i}^{a})^{-1} - \gamma_{i} \mathbf{L}_{i}^{T} \mathbf{S}_{i} \mathbf{L}_{i} \geq 0$$

with an appropriate/robust choice of γ_i

HF and Inflation in EnKFs

□ By choosing different forms of $\gamma_i \mathbf{L}_i^T \mathbf{S}_i \mathbf{L}_i$ in the EnHF update formula of the uncertainty matrix

 $(\boldsymbol{\Delta}_{i}^{a})^{-1} = (\boldsymbol{\Delta}_{i}^{b})^{-1} + (\mathcal{H}_{i})^{T} (\mathbf{R}_{i})^{-1} \mathcal{H}_{i} - \gamma_{i} \mathbf{L}_{i}^{T} \mathbf{S}_{i} \mathbf{L}_{i} \geq 0$

we can derive any EnKF with covariance inflation

□ <u>Case I-BG</u>: If $\gamma_i \mathbf{L}_i^T \mathbf{S}_i \mathbf{L}_i = c(\hat{\Delta}_i^b)^{-1}$, we obtain the SEIK inflation in Pham et al. (1998)

$$(\hat{\boldsymbol{\Delta}}_i^a)^{-1} = (1-c)(\hat{\boldsymbol{\Delta}}_i^b)^{-1} + (\mathcal{H}_i)^T (\mathbf{R}_i)^{-1} \mathcal{H}_i$$

□ <u>Case I-ANA</u>: If $\gamma_i \mathbf{L}_i^T \mathbf{S}_i \mathbf{L}_i = c \; (\hat{\boldsymbol{\Sigma}}_i^a)^{-1}$, we derive the SR-EnKF inflation in Whitacker and Hamill (2002)

$$\hat{\Delta}_i^a = (1-c)^{-1} \hat{\Sigma}_i^a$$

HF with Modes Inflation

Case I-MTX: If
$$\mathbf{L}_i^T \mathbf{S}_i \mathbf{L}_i = \mathbf{I}_{m_x}$$
, then

$$(\hat{\boldsymbol{\Delta}}_i^a)^{-1} = (\hat{\boldsymbol{\Sigma}}_i^a)^{-1} - \gamma_i \mathbf{I}_{m_x}$$

In this case, using an SVD on the EnKF analysis covariance matrix before inflation

$$\hat{\mathbf{\Sigma}}_i^a = \mathbf{E}_i^a \mathbf{D}_i^a (\mathbf{E}_i^a)^T$$
 , where $\mathbf{D}_i^a = \operatorname{diag}(\sigma_{i,1}, \cdots, \sigma_{i,m_x})$

Then after inflation,

$$\hat{\Delta}_{i}^{a} = \mathbf{E}_{i}^{a} \mathbf{\Lambda}_{i}^{a} (\mathbf{E}_{i}^{a})^{T}$$
, with $\mathbf{\Lambda}_{i}^{a} = \operatorname{diag}\left(\frac{\sigma_{i,j}}{1 - c \sigma_{i,j}/\sigma_{i,1}}\right)$, $0 \le c < 1$

Very similar to the ETKF inflation of Ott et al. (2004) who augmented the eigenvalues by a constant

A Simple Example

Consider the model

$$x_{i+1} = 1 + 0.5x_i - 0.1x_i^2 + f(x_i; k, h, d) + u_i,$$

Forecast model

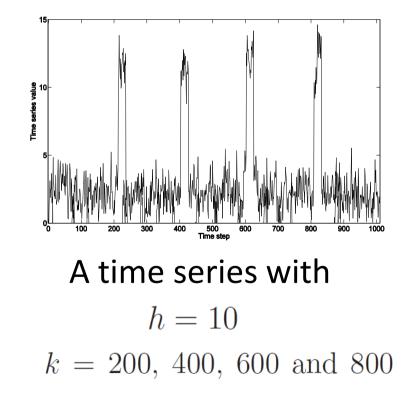
$$x_{i+1} = 1 + 0.5x_i + u_i$$

Observation model

$$y_i = x_i + v_i$$

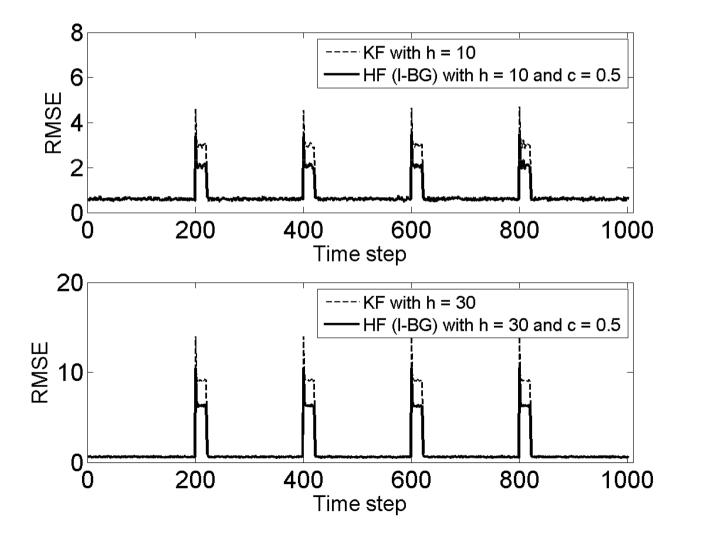
with
$$u_i \sim N(u_i : 0, 1)$$

 $v_i \sim N(v_i : 0, 1)$.



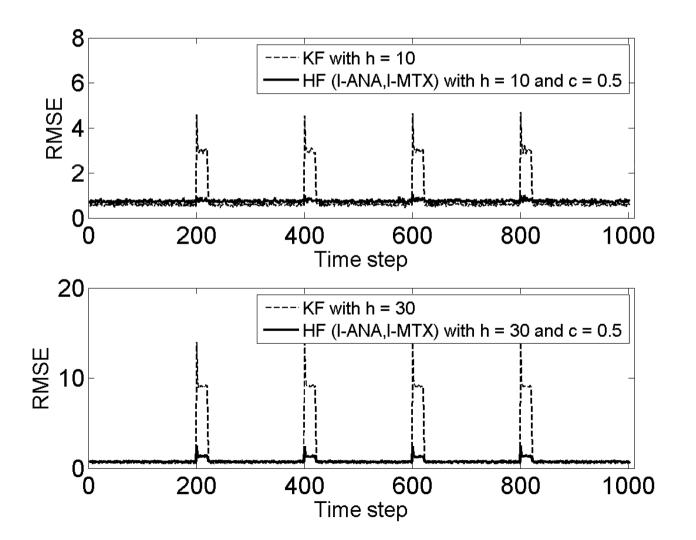
A Simple Example – HF I-BG

Assimilation results of I-BG HF:



A Simple Example – HF I-ANA

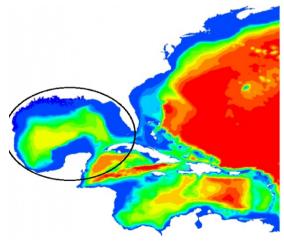
• HF I-ANA and I-MTX are equivalent in 1D



Application to Storm Surge Forecasting

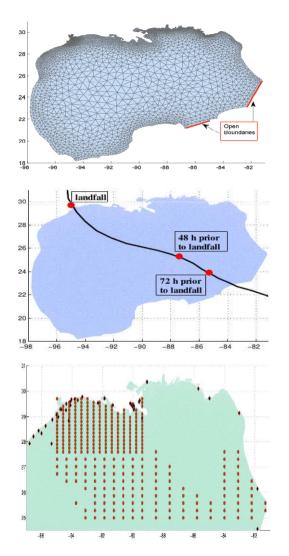
- Interest of forecasting storm surge has dramatically increased since the devastating 2005 hurricane season
- Advanced Circulation (ADCIRC) discretizes shallow water equations using FEM on unstructured meshes
- A case study Hurricane Ike, which made landfall along the upper Texas coast on Sep. 13 2008
- Observations of water levels are taken from a high-resolution hindcast of Ike
- Forecast model uses a low-resolution configuration with different winds and ICs





Experiments Design

- Assimilation experiments setup
 - Time step: 10 s
 - Grid of 8006 nodes for U, V, Eta and 14,269 elements
 - 5 tidal constituents:
 M2, S2, K1, O1, P1
 - Measurement Stations: 350
 - Analysis: Every 2 hours
 - Assimilations steps: 48
 - HF based on SEIK
 - Ensemble size: 10

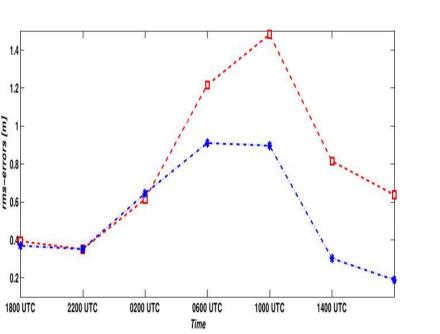


20

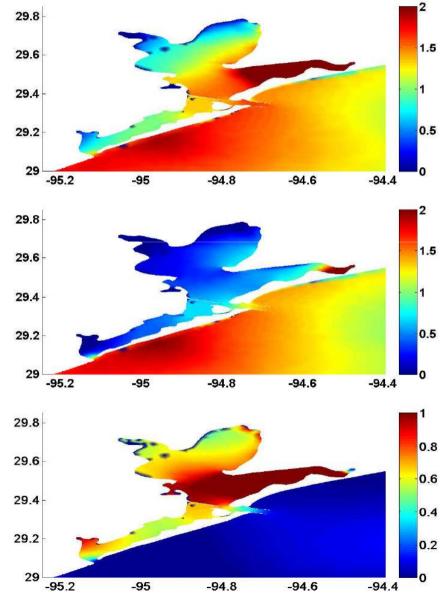
Inflation factor λ	Coastal rms-erro	or Rms -error > $3m$
ND	1.92	1.91
1.0	1.68	1.65
1.1	1.59	1.62
1.2	1.45	1.46
1.4	1.58	1.61
1.5	1.62	1.65
1.6	1.38	1.42
1.7	1.47	1.51
2.	1.52	1.54
Factor c Coa	stal rms-error	Rms-error > $3m$
ND	1.92	1.91
0.1	1.43	1.38
0.2	1.40	1.42
0.3	1.47	1.50
0.4	1.34	1.36
0.5	1.30	1.33
0.6	1.17	1.10
0.7	0.80	0.87
0.8	1.35	1.38

Average rms-errors of the maximum water level forecasts in Ike simulations using 1) SEIK and 2) HF-SEIK with different inflation

Free surface elevation error on 13/9/2008 at 0800 UTC from truth SEIK, HF-SEIK, and differences



Averaged rms-error of water elevations in the landfall area best cases with SEIK and HF-SEIK between 9/12/2008 and 9/13/2008



Discussion

- $\hfill\square$ H_∞ provides a unified framework for inflation in EnKFs
- \Box H_{∞} is more robust for systems with fast varying regimes
- Develop "optimal" adaptive inflation schemes based on HF: one still need to add an optimal criterion to define "optimal inflation"
- Include parameters and inputs, such as bathymetry and winds, in the estimation process
- Assimilation with coupled wave storm Surge models

References

- I. Hoteit, D.-T. Pham, and J. Blum, 2002. A simplified reduced order Kalman filtering and application to altimetric data assimilation in Tropical Pacific. Journal of Marine Systems, 36, 101-127.
- D. Simon, 2006. *Optimal state estimation: Kalman, H-infinity, and nonlinear approaches*. Wiley-Intersciences, pp.522.
- X. Luo X, I. Hoteit , 2011. Robust filtering and its relation to covariance inflation in the ensemble Kalman filter. Monthly Weather Review, 139, 3938-3953.
- T. Butller, U. Altaf, C. Dawson, I. Hoteit, X. Luo, and T. Mayo, 2011: Data Assimilation within the advanced circulation (ADCIRC) modeling framework for hurricane storm surge forecasting. Monthly Weather Review, 140, 2215-2231.

THANK YOU

Participants

KAUST Ibrahim Hoteit Umer Altaf

Xiaodong Luo

UT-Austin Clint Dawson Troy Butler Talea Mayo

Intro: Assimilation

- Data assimilation combines numerical models and data to compute the best possible estimate of the state of a dynamical system
- All assimilation schemes have been derived from the Bayesian filtering theory, determine *pdf* of the state given available data

Uncertainty Quantification + Uncertainty Reduction

[Forecast: propagate pdf
 with the model in time

Analysis: correct prior *pdf* with new data

HF and Inflation in EnKFs

Inflation is becoming a standard tool in EnKFs

Hamill et al. (2011): Since the early implementations of the EnKF, several now-standard modifications are commonly considered to be essential in spatially distributed systems; the first is some form of "localization" of covariances (Houtekamer and Mitchell 2001; Hamill et al. 2001). Another common technique for the stabilization of the EnKF is the enlargement of the prior through "covariance inflation" (Anderson and Anderson 1999)

No rigorous framework for inflation yet!

Talagrand on Hoteit's thesis (2001):

My only critic about this thesis is related to the use of forgetting factor. I do not see any theoretical reason to use it!

Why Using H_{∞} ?

- Better deal with large dimensional geophysical systems with intermittent and fast varying regimes which are subject to
 - Important model uncertainties
 - ✓ Poor priors
- Provide a theoretical framework for different inflations

Intro: Robust H_∞ Filtering

- Focus on the robustness of the estimate in the sense that it has better tolerance to possible uncertainties
- Do not assume the complete knowledge of the statistics of the system in assimilation; recognizing that some uncertainties cannot be avoided
- Replace the optimal estimate criterion by a robust criterion, e.g. H_∞ which is based on a minimax criterion

HF and Inflation in EnKFs

• <u>Case I-OBS</u>: If $\gamma_i \mathbf{L}_i^T \mathbf{S}_i \mathbf{L}_i = c(\mathcal{H}_i)^T (\mathbf{R}_i)^{-1} \mathcal{H}_i$, which leads to $(\hat{\Delta}_i^a)^{-1} = (\hat{\Delta}_i^b)^{-1} + (1-c)(\mathcal{H}_i)^T (\mathbf{R}_i)^{-1} \mathcal{H}_i$

or, in other words, to the inflation of the observation covariance.

In the EnKF, the observation covariance is generally undersampled because of the limited ensemble size. This means

 $1 - c > 1 \implies \gamma_i < 0$

implying more confidence in the prior, which could explain some underperformances of the EnKF compared to SR-EnKFs.

The EnKF could benefit from the inflation of the observation covariance

Time is 13 Sept. 08 00:00 UTC

Top: Forecast. Middle: No assimilation Bottom: Difference

