LOCALIZATION OF THE ENSEMBLE COVARIANCES USING THE DIFFUSION OPERATOR APPROACH

Max Yaremchuk Naval Reserarch Laboratory, USA

Dmitri Nehchaev University of Southern Mississippi, USA

Conference on Ensemble Methods in Geophysical Sciences November 14, 2012, Toulouse, France

MOTIVATION

- **1. Schur product of the ensemble covariance with heuristic localization functions**
 - + computaionally cheap
 - flow dependnce, positive definiteness
- 2. Enriching the ensemble with Schur cross-products of the ensemble members (Bishop and Hodyss, 2007)
 - computationally expensive
 + flow dependence, positive definiteness
- **3. Approximating the ensemble covariance with a positive function of the diffusion operator**

computationally inexpensive flow dependence, positive definiteness

OBJECTIVE: explore (3) and compare it with (1-2) in terms of accuracy/computational cost in a realistic setting

OUTLINE

- 1. The diffusion operator technique
 - a. Gaussian and spline models
 - b. Differential method
 - c. Integral method
- 2. Experimental setting and comparison with adaptive and non-adaptive methods
 - a. Diffusion tensor model
 - b. Ensemble generation and error metrics
 - c. Accuracy
 - d. Computational efficiency
- 3. Summary

Localization methods (1)

Diffusion operator (DO) approach

$$\mathbf{B}_{\ell} = \mathbf{V} \mathbf{C}_{\ell} \circ \mathbf{W}_{d} \mathbf{V} \qquad \mathbf{D} = -\nabla_{\alpha} D^{\alpha\beta} \nabla_{\beta}$$

$$\mathbf{Gauss:} \quad F_{e} \{\mathbf{D}\} = \exp(-\frac{\mathbf{D}}{2}) \qquad \mathbf{C}_{\ell}^{e}(\mathbf{r}) = \exp\left(-\frac{r^{2}}{2}\right)$$

$$\mathbf{Spline:} \quad F_{n} \{\mathbf{D}\} = (\mathbf{I} + \frac{\mathbf{D}}{2n})^{-n} \qquad \mathbf{C}_{\ell}^{n}(\mathbf{r}) = \frac{(\sqrt{2nr})^{n-1} \mathcal{K}_{n-1}(\sqrt{2nr})}{2^{n-2}(n-2)!}$$

$$\mathbf{r}^{2} = r^{\alpha} D_{\alpha\beta}^{-1} r^{\beta}; \quad \mathbf{r} = \mathbf{x} - \mathbf{y}$$

DO approach: differential method

$$D_{\alpha\beta}^{-1} = -\frac{1}{a} \nabla_{\alpha} \nabla_{\beta} C(r) \qquad a = \lim_{r \to 0} \frac{1}{r} \frac{\partial C}{\partial r}$$
$$a^{e} = 1 \qquad a^{n} = 1 - \frac{2}{n}$$

$$[\nabla_{\alpha}\nabla_{\beta}\mathbf{C}] = \frac{\langle (\nabla_{\alpha}\mathbf{x}) \circ (\nabla_{\beta}\mathbf{x}) \rangle - (\nabla_{\alpha}\mathbf{v}) \circ (\nabla_{\beta}\mathbf{v})}{\mathbf{v} \circ \mathbf{v}}$$

Estimate the inverse of D from the curvature of the sample correlation matrix at the diagonal

DO approach: integral method

$$\int_{\omega} \left(\mathsf{C}_{\ell}(\boldsymbol{x} - \boldsymbol{y}) - \tilde{\mathsf{C}}(\boldsymbol{x}, \boldsymbol{y}) \right)^2 d\boldsymbol{y} \to \min_{\boldsymbol{D}(\boldsymbol{x})} \right)$$

$$\begin{aligned} \mathbf{C}_{\ell}^{e}(\boldsymbol{r}) &= \exp\left(-\frac{r^{2}}{2}\right) \\ \mathbf{C}_{\ell}^{n}(\boldsymbol{r}) &= \frac{(\sqrt{2n}r)^{n-1}\mathcal{K}_{n-1}(\sqrt{2n}r)}{2^{n-2}(n-2)!} \\ \boldsymbol{r}^{2} &= r^{\alpha}D_{\alpha\beta}^{-1}r^{\beta}; \quad \boldsymbol{r} = \boldsymbol{x} - \boldsymbol{y} \end{aligned}$$

Estimate D by minimizing the misfit between the sample correlation matrix and its analytic approximation in the given vicinity ω of the diagonal

Diffusion tensor model

 $\xi = \max(1, \sqrt{|\mathbf{u}\tau|/\rho_b}) \qquad \tan \gamma = \frac{v}{u} \,\theta(|\mathbf{u}\tau| - \rho_b)$

Ensemble generation

Error mertrics

$$\rho(\mathbf{B}_{\ell}, \mathbf{B}) = \sqrt{\frac{|\mathbf{B}_{\ell} - \mathbf{B}|}{|\mathbf{B}|}}$$

Accuracy: Gaussian model

Accuracy: spline model

Accuracy: synthetic model

$$\begin{split} M &\simeq n_s k N \\ M^* &\simeq n_s k N J \\ M' &\simeq n_s k N (0.2 + \frac{1}{k} + \frac{m}{5k}) \\ M^\circ &\simeq n_s k N (0.5 + \frac{2}{k} + \frac{m}{5k}) \\ M^\circ &\simeq n_s k N (0.5 + \frac{2}{k} + \frac{m}{5k}) \\ M &\simeq n_s k N (0.5 + \frac{2}{k} + \frac{m}{5k}) \\ N &\sim 10^6 - 10^7 \\ n_s &\sim 50 \\ \text{correlation stencil size} \end{split}$$

cost relative to the non-adaptive scheme

$$M^*/M = J$$
 $M'/M = 0.2(1 + \frac{m}{k})$ $M^\circ/M = 0.5(2.5 + \frac{m}{k})$

Summary

Accuracy and computational cost of the DO-based covariance localization methods have been tested

- **1.** An integral DO method has been proposed
- 2. DO methods demonstrate better accuracy at ensemble sizes less than one hundred.
- 3. At larger ensemble sizes the accuracy of DO methods is limited by the violation of the local homogeneity assumption in realistic applications.
- 4. Integral method is more accurate, but 1.5-3 times more computationally expensive than the differential method.
- 5. DO localization methods are more computationally efficient than the adaptive method while providing similar accuracies at K < 100.

These features indicate that DO localization methods could be tested with larger problems emerging in real applications

Appendix

$$\begin{aligned} R_{ik} &= -\left(\frac{1}{r}\frac{\partial C}{\partial r}\right)_{r=0}^{-1} \nabla_i \nabla_k C \\ r^2 &:= x^i R_{ik} x^k \end{aligned}$$

$$\nabla_i \nabla_k C = \frac{C_r}{r} R_{ik} + \left(C_{rr} - \frac{C_r}{r} \right) \frac{1}{r^2} R_{ij} x^j R_{km} x^m$$

$$\begin{split} C(r) &= (2\pi)^{-n} \int\limits_{\mathbb{R}^n} C(\mathbf{k}) \exp(-i\mathbf{k}\mathbf{x}) d\mathbf{k} \simeq \int\limits_0^\infty C(k) k^{n/2} \frac{J_{n/2-1}(kr)}{r^{n/2-1}} dk \\ &\left[\frac{\partial^2 C}{\partial r^2} - \frac{1}{r} \frac{\partial C}{\partial r} \right]_{r=0} = 0 \end{split}$$