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Why hybrid variational-ensemble DA?

1. Variational DA:
Full rank forecast error covariance

Nonlinear minimization

2. Ensemble DA:
Flow-dependent forecast error covariance

Uncertainty feedback between analysis and forecast

3. Unresolved issue:
Optimal Hessian preconditioning

4. Computational issues (user and application depen dent)
Code development and updates, computing time

Take advantage of both DA methodologies



Minimization and Hessian preconditioning

Minimize cost function 
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Gradient Hessian

Optimal Hessian preconditioning can:
(1) Improve minimization convergence
(2) Reduce error of the analysis solution

Descent direction in each minimization iteration is the 
solution of linear equation:  

Fdk = −gk or F(wk − wk−1) = gk − gk−1



Improving convergence with Hessian preconditioning

Geometric interpretation of Hessian preconditioning :



Impact of Hessian preconditioning 
on the accuracy of minimization solution 

What is the error of solution if C is neglected?

Fd = −g ⇒ d = F−1g

In each iteration search for the solution of linear  equation:  

Matrix C is often neglected d
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What is the error of solution if C is neglected?

d1 − dopt = g− I +C[ ]−1
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Solution error can be significant if sub-optimal He ssian preconditioning is used

C = Pf
T /2H TR−1HPf

1/2d1 − dopt

dopt

≤ C C
2

~ O(102 )



Components of hybrid variational-ensemble DA

(1) Flow-dependent error covariance (improve variational DA)

- Ensemble DA produces flow-dependent forecast error covariance, while variational DA has 
static forecast error covariance (i.e. B matrix)

(2) Full-rank error covariance (improve ensemble DA)

- Ensemble DA has insufficient number of DOF, while variational DA has all DOFs

(3) Nonlinear minimization (improve ensemble DA)

- Ensemble DA solve linear KF equation, while variational DA has nonlinear minimization- Ensemble DA solve linear KF equation, while variational DA has nonlinear minimization

(4) Optimal Hessian preconditioning (improve variational DA)

- Ensemble DA has an implicit optimal preconditioning (e.g., Kalman gain), while variational DA 
can employ only an approximate preconditioning

(5) Uncertainty feedback between analysis and forec ast  (improve variational DA)

- forecast uncertainty impacts the analysis uncertainty, and vice versa

Several or all these components can be incorporated in a hybrid DA system



Hybridization considerations

� Combining two (or more) DA algorithms can be advant ageous

� Need to understand well each of the algorithms inco rporated

� Important to include as many as possible requiremen ts

� Straightforward hybridization may be simpler, but i s not optimal

� Selective hybridization may be more complex, but ha s a potential to be 
optimal: selectively include only the desired compo nents

� There is no hybrid DA method that includes all five  requirements

Can we include all five components in a hybrid DA system?



Consider Maximum Likelihood Ensemble Filter (MLEF)  
(Zupanski 2005, MWR; Zupanski et al. 2008, QJRMS) 

Standard KF:
- Analysis is equivalent to minimizing a quadratic cost function (posterior pdf)
- Uncertainty is given by the inverse Hessian

MLEF: Generalize KF to include nonlinear observation operators:
� Minimize arbitrary nonlinear cost function
� Use inverse Hessian at the minimum as uncertainty estimate

Analysis:

Forecast:
Standard KF:
- Initial guess is the forecast from previous analysis
- Forecast uncertainty is an evolution of analysis uncertainty by a linear model

MLEF: Generalize KF by evolving the state and analysis un certainty by a 
nonlinear model
� Initial guess is the forecast from previous analysis
� Forecast uncertainty is an evolution of analysis uncertainty by a nonlinear model

Forecast:
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Full rank static error covariance 
and optimal Hessian preconditioning

Q: What needs to be done in order to maintain optim al Hessian preconditioning

not only for the ensemble, but also for the static covariance component? 

A: Square root forecast error covariance should hav e a small number of columns

in order to allow the computation of 
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Consequence:

� Not feasible to have a full rank static error covar iance and optimal Hessian 
preconditioning due to prohibitive cost of computin g perturbed 
observation operator and SVD 

Alternative:

� Is it possible to define a sufficient-rank static error covariance instead, 
“sufficient” defined as an acceptable approximation  to the full-rank static 
error covariance? 



Sufficient-rank static error covariance 

1. Construct an orthonormal reduced rank matrix Q, and

2. Define a sufficient-rank static covariance PSR as

PSR
1/2 = P1/2Q

Assume that a full rank static error covariance squ are root is defined

P1/2

Define “sufficient” using a measure of distance µµµµ between full rank and 
reduced rank matrices

µ =
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� µµµµ is between 0 and 1: smaller µµµµ implies better approximation

� Distance between full-rank and sufficient rank cova riance is bounded by 
the norm of orthogonal projection onto ker(QQT)



Orthonormal matrix Q

1. Define local covariance as sub-matrix of P1/2 over local domain defined by 

typical decorrelation length

2. Compute SVD of local matrix PL
1/2=UΣΣΣΣUT and truncate to rank M
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For µµµµ <<1 and εεεε <<1 one can build an acceptable sufficient-rank  PSR
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3. Build Q as a block-circulant matrix of local singular vector s {ui}
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Preliminary results

1. Global domain 147x147x33 (~700,000) grid points

2. Local domain 21x21x33 (decorrelation length10x10x7)

3. Global covariance defined as a banded Toeplitz mat rix

4. Compute Q using M=49 singular vectors

6. Evaluate covariance structure as a response to s ingle observation at:

a- central point of global (and local) domains 

b- corner point of global domain

c- corner point of local domainc- corner point of local domain
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Processing sufficient rank matrix: central point

Horizontal response (truth) Horizontal response (Q)

1.0

Sufficient rank covariance becomes acceptable after processing

Horizontal response 
(Q + localization)

0.018

Horizontal response 
(Q + localization + re-scaling)

1.0



Processing reduced rank matrix: central point

Vertical response (truth) Vertical response (Q)

Vertical response 

Vertical response becomes also acceptable after post-processing 

Vertical response 
(Q + localization + re-scaling)



Processing reduced rank matrix: corner point (b)

Global corner point (truth) Global corner point (post-processed)

Local corner point (truth) Local corner point (post -processed)

Cross-correlation exists even for corner points

Local corner point (truth) Local corner point (post -processed)



Summary and future work

� Sufficient rank achieved with relatively small numb er of additional columns 

- important for computational reasons

� Multivariate response

- evaluate the reduced-rank impact on cross-variable correlations

� Implement hybrid covariance � Implement hybrid covariance 

- augment ensemble covariance by adding static covariance columns 

- define orthogonally complement subspaces 

� Tests of the new hybrid method in realistic systems

- NASA WRF, NOAA WRF-NMM, NOAA hurricane WRF, WRF-CHEM, 

- assimilation of NOAA operational observations

- assimilation of cloud- and precipitation-affected MW and IR radiances

- assimilation of lightning flash rates


