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Introduction: the AROME NWP system

� Operational, covers France with dx=2.5 km
� 1.3 108 variables, explicit convection, 
realistic representations of clouds, turbulence, 
surface interaction…
⇒DA based on « real time » ensembles 
unaffordable for the time being

Microphysical scheme allowing to get
realistic obervation operators in 
clouds and precipitation
� DOW and reflectivities from Doppler 
radars are assimilated operationally
� The assimilation of cloudy radiances 
under study, requiring background error
covariances for hydrometeors
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3h cycle using an inc3DVar and the CVT formulation: 

Following notation of Derber and Bouttier (1999) : 

• Kp is the balance operator allowing to output uncorrelated parameters 
using balance constraints. 
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Introduction: DA in AROME
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regression operators that 
adjust couplings with scales

• BS is the spatial transform:

Kp and BS are static and are deduced from an ensemble assimilation 
(Brousseau et al. 2011a)

BS = ΣCΣT



B strongly depends on weather regimes : 

Spread of daily forecast 
error of std deviations for q
(ensemble gathering anticyclonic
and perturbed situations, 
Brousseauet al. 2011b)

Introduction: limitations of the operational B

and perturbed situations, 
Brousseauet al. 2011b)

� Different methods have been published to compute a flow 
dependent BS in a VAR context, none for Kp

� Here we focus on a method allowing to diagnose and to use both 
different BS and Kp in different areas 
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Modelization of B for specific meteorological phenomena

Use of an EDA designed for LAM (see poster P72 by P. Brousseau)

B Calibration

� Few cycles needed to get the full spectra of error variances
� High impact phenomena under-represented in the ensemble

B Calibration



Forecast errors are decomposed using features in the background 
perturbations that correspond to a particular meteorological phenomena. 
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Binary masks:

Modelization of B for specific meteorological phenomena
(Montmerle and Berre 2010)

Example for 
precipitation

ε fij
= xbi

* − xbj

* ≈ Gδij
pp ε fij

+ Gδij
cc ε fij
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(G : Gaussian blur)
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Use of the heterogeneous formulation: 
(Montmerle and Berre, 2010)

Application #1: use of a « rainy » B for DA of radar data
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geographical areas where B1 and 
B2 are applied: 

⇒ This formulation allows to consider 
simultaneously different BS and Kp that 
are representative of one particular 
meteorological phenomena 



Here: EXP: B1=rain, B2=OPER , D=radar mosaic

EXP OPER

Dij >0.5

Application #1: use of a « rainy » B for DA of radar data
Montmerle (MWR, 2012)

Humidity increment at 600 hPa (g.kg-1) 
(zoom over SE France)

B1 has shorter correlation lengths:
⇒ increments have higher spatial resolutions in precipitation
⇒ Potential increase of the spatial resolution of assimilated radar data
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Application #1: use of a « rainy » B for DA of radar data
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• Spin-up reduction correlated with the number of grid 
points where B1 is applied
• Positive forecasts scores up to 24h for precipitation 
and  for T and q in the mid and lower troposphereVertical cross covariances

OPER



Application #2: heterogeneous 3DVar for fog forecast

In fog, T and q are strongly coupled and their background errors below
the inversion are strongly decorrelated with higher levels.

⇒ Increments due to ground measurements are confined whithin the fog:

750 hPa

⇒ More details in Ménétrier and Montmerle (2011)

Vertical cross sections of temperature increments



Application #3: Assimilation of cloudy radiances in a 1DVar
Martinet et al. (2012)

Problematic: Non-Gaussian innovations due to mislocation of simulated
structure and modeling defficiencies

⇒ Simulation of IASI radiances using profiles of ql and qi. Modelling of 
multi-layer clouds and cloud scattering with RTTOV-CLD.

⇒ Selection of homogeneous overcast scenes from a database of 
profiles extracted from AROME forecasts by comparing simulated and 
observed AVHRR radiances co-located with the IASI field of viewobserved AVHRR radiances co-located with the IASI field of view

Raw innovations Innovations after screening



Computation of 
background error 
covariances for all 
hydrometeors in clouds:

Analogously to Michel et al. 
(2011), the mask-based 
method and an extension of 

Application #3: Assimilation of cloudy radiances in a 1DVar

Liquid cloud

method and an extension of 
Kp have been used: 

δT = δT
δq = T0δT +δqu
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Assimilation of IASI cloudy radiances
ql and qi have been added to the state vector of a1DVar, along with T and q

Reduction of 
background error 

Application #3: Assimilation of cloudy radiances in a 1DVar

⇒ Background errors are reduced for ql and qi (as well as for T and q 
(not shown)), increments are coherently balanced for all variables.

background error 
variances for selections 

of high opaque cloud 
(left) and low liquid 

cloud (right) 

Martinet et al. (2012)



Evolution of analyzed profiles using AROME 1D 

Example for low 
semi-transparent 

ice clouds:

Application #3: Assimilation of cloudy radiances in a 1DVar

⇒ Thanks to the multivariate relationships and despite the spin-down, 
integrated contents keep values greater than those forecasted by the 
background and by other assimilation methods up to 3h

Time evolution of integrated ice cloud contents (min)
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� High impact weather phenomena (e.g convective precipitations, fog…) 
are under-represented in ensembles that are used to compute 
climatological B : DA of observations is clearly sub-optimal in these areas

� By using geographical masks based on features in background 
perturbations in EDA, specific B matrices can be computed

� These B matrices, characterized by different spatial transforms and by 
different balance operators, can be used simultaneously in the VAR 

Conclusions & perspectives

different balance operators, can be used simultaneously in the VAR 
framework using the heterogeneous formulation

� So far, positive impacts while combining radar data and “rainy” B : spin-
up reduction, positive scores

� The formulation of the balance operator has been extended for all 
hydrometeors that are represented in AROME in order to compute their 
multivariate background error covariances using cloudy mask.

� The latter are currently exploited to analyzed cloud contents from DA of  
cloudy radiances in a 1D framework.



� As spatial covariances, balance relationships also depend on 
the meteorological flow, especially in cloud and precipitation (e.g 
freezing level, LFC…). 

⇒Tests are ongoing using ensembles “of the day”

� An EDA at convective scale AEARO is currently under test, 

Conclusions & perspectives

� An EDA at convective scale AEARO is currently under test, 
mimicking at first what is done in the AEARP at global scale (see 
presentation of Loïk Berre)

� In parallel, studies about the filtering of variances and 
horizontal correlations computed from such an ensemble are 
ongoing: So far, very different structures have been obtained 
compared to global scale and inhomogeneous filters are likely to 
be used (see P74 B. Ménétrier’s poster)



Thank you for 
your attention…
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Application #1: use of a « rainy » B for DA of radar data

Spin-up reduction:
⇒ Analyzed fields better
balanced
⇒ Spin up reduction
correlated with the number of 
grid points where B1 is applied

2 weeks of cycled experiments

⇒ Positive scores up to 24h against
soundings (and ECMWF analyses) 
in the mid and lower troposphere for 
T and q, neutral otherwise
⇒ Scores on rainrates: better
detection, less bias, neutral on false 
alarmtime serie of bias and std dev for

12h forecast of q850hPa against RS

Cntrl Exp



Impact on forecasts

Cycled experiment 6 -> 19 June 2010
Scores against raingauges for 3h (top) and 24h (bottom) cumulated rainfall

⇒ Better 
detection (POD, 
Brier Skil 
Score), less 
bias, neutral on 
false alarm


