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Overview of AROME-EPS

*  AROME-France model: 2.5km grid, non-hydrostatic, 36-h range

«  2011/2012: offline research experiments over several 20-day periods

«  2012: real-time demonstration over small domain (HyMeX field experiment)
2013: real-time preoperational over full domain

«  2014: operational production, at least 8 members every 6 hours
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AROME-EPS technical architecture

Regional 2.5-km system
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' Large-scale boundary conditions

AROME model is hourly coupled at lateral & upper boundaries.

Several options for selecting LBCs in a bigger global ensemble:
* random pick
* or, one PEARP multiphysics config per AROME member
* or, cluster PEARP forecasts using one of two methods:
= K-means, more faithful to original PDF

= hierarchical complete link (similar to COSMO-LEPS), maximizing
Interdistance between members

Results:
* impact on ensemble scores (ROC, Brier, CRPS) is tiny

* clustering improves a bit the high precip and wind scores, by

promoting member diversity (ie sampling the PDF tails)
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Clustering example

* empirical idea: self-avoiding subsampling of forecast trajectories

* example of K-means clustering topology (plotted along 2 leading principal
components)
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' Initial perturbations: EDA in
convective-scale model

Setup of AROME ensemble data analysis:

3DVar+surface DA system is like deterministic DA, except :

* obs are randomly perturbed
* LBCs taken from global ARPEGE EDA (4DVar)

Results:

provides acceptable forecast spread from step O
has physically believable low-level and surface spread
no spin-up = ensemble suitable for probabilistic nowcasting ?

(also used to produce background covariances for deterministic
3DVar, see posters)

cost ~ 10% of AROME EPS forecast system



AROME EDA: example of physically
convincing initial spread

Low cloud cover on
23/2/2008 (MSG)

Error std of the day (T 900 hPa)

(Arome EnVar, 6 members)
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' AROME EDA: inflation

Plain EDA is underdispersive: lacks representation of system errors
(in model & in 3DVar algorithm).

Adaptive inflation of background fields:
« compare variance of innovations cov(y-Hx;) with EDA-
predicted variances cov(M[x )
* inflate EDA background ensemble as a function of discrepancy:
e/=ej+al(e-e;) a>1
* a~1.15is applied in each 3DVar cycle (every 3 hours)

* improves short-range spread/skill consistency, better ensemble
scores (reliability, CRPS, Brier, ROC).

* Impact is significant up to 24h-range.



Arome-EDA inflation

(This plot made using ARPEGE global EDA)
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Initial perturbations: cheaper alternatives to EDA

Consider IC perturbations of the form  x;=x,+a(z-z)
« X, :initial condition of ensemble member i
* X, :deterministic high-resolution analysis
« z;: externally supplied ensemble

* a:scaling vertical profile (empirical tuning constant in mid troposphere, zero
at top and bottom). Only applied to wind,T,ps.

Results:
« with z; = ARPEGE EDA : better than no perturb, but very underdispersive
« with z; = PEARP ICs : better than ARPEGE EDA (because of SVs ?)
« with z; = 24-h breeding of AROME EPS: performance close to PEARP ICs

*  AROME EDA easy winner until ~9h range or at low levels, not so superior
otherwise.

* ranking is clear for spread/skill consistency and CRPS, not so clear for ROC.

Things to try: 6-h breeding, surface breeding, adaptive tuning of a.



' Model error in AROME EPS

In atmosphere: SPPT stochastic physics tendencies (akin to
ECMWEF's)

multiplicative noise on model tendencies,
noise autocorrelations : univariate, large-scale, slowly evolving
recently extended into surface boundary layer

increases spread & rms errors, most probabilistic scores are
improved.

drawback: drying in low troposphere
not yet in EDA (model error represented by adaptive inflation)

Also tried physics parameter perturbations:
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in microphysics : negligible impact
in turbulence : more promising
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Impact of SPPT model error scheme

Reliability of precipitation over 5 weeks
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' Surface perturbations (work in progress)

found promising in sensitivity studies: SST, Wg, Rsmin, LAI, Cveg, Zo

orog

random perturbation generator: fc perturb T2m at 12h-range
prescribed 2D Gaussian correlation resulting from small SST changes

TTTm—




Verification of short-range, high resolution
ensembles

Lessons learned:
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Must use real observations, not analyses, as truth.
Observation errors are significant
Model biases are significant, with large diurnal cycle.

Error growth over first 24h of forecasts is usually smaller than analysis
errors.

Observation availability limits significance of probabilistic scores
(experiments are expensive, thus short)

Usable: T2m, HU2m, 10m-wind, 10m-gusts, raingauge, aircraft wind & T
Promising but more difficult: radar, satellite radiances (complex obs errors)



' Sample results from AROME EPS

* Scores
* High-impact Mediterranean precipitation
* Scattered thunderstorms
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T2m

Reliability diagram - event: T2m(K) > 010

AROME-EPS sample scores (23 days in Oct 2011)
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Orographically-forced heavy convective
precipitation (SE of France)
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=good guidance (clear signal, limited spread,
good detection, fewer false alarms than PEARP)
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Scattered thunderstorms over flat terrain:
from members to probabilities

flight-level simulated reflectivity, 90% quantile, computed
4 random members point-by-point using 12 members

All the structure inside the

red area is sampling noise.

The curse of convective dimensionality: in a situation like this,
~100 members would be needed for adequate sampling.
18 PDF dressing is needed, with a mislocation error model.



19

Summary

nearly complete system setup (need surface perturbations)

spread & reliability are mostly adequate,
* we need to improve statistical resolution
* low-level weaknesses on RH2m, ff10m
* convection needs some kind of smoothing

ensemble size is a major performance driver. Key events cannot be
simulated using a lower-resolution model.

model errors mostly seem systematic ones (diurnal biases, structure
of precip field), they have a clear effect on probabilistic scores.

is there a good perturbation tuning methodology ? currently, we risk
compensation between various types of perturbations.

[
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Thank you for your attention
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