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Overview of AROME-EPS

 AROME-France model: 2.5km grid, non-hydrostatic, 36-h range
 2011/2012: offline research experiments over several 20-day periods
 2012: real-time demonstration over small domain (HyMeX field experiment)
 2013: real-time preoperational over full domain
 2014: operational production, at least 8 members every 6 hours

target operational domain

2012 HyMeX demonstration
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AROME-EPS technical architecture
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Large-scale boundary conditions

AROME model is hourly coupled at lateral & upper boundaries.

Several options for selecting LBCs in a bigger global ensemble:
● random pick
● or, one PEARP multiphysics config per AROME member
● or, cluster PEARP forecasts using one of two methods:

  K-means, more faithful to original PDF
  hierarchical complete link (similar to COSMO-LEPS), maximizing 
interdistance between members

Results:
● impact on ensemble scores (ROC, Brier, CRPS) is tiny
● clustering improves a bit the high precip and wind scores, by 
promoting member diversity (ie sampling the PDF tails)
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Clustering example

 empirical idea: self-avoiding subsampling of forecast trajectories
 example of K-means clustering topology (plotted along 2 leading principal 

components)

35 ARPEGE members

7 selected couplers
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Initial perturbations: EDA in 
convective-scale model

Setup of AROME ensemble data analysis:
 3DVar+surface DA system is like deterministic DA, except :

• obs are randomly perturbed

• LBCs taken from global ARPEGE EDA (4DVar)

Results:

 provides acceptable forecast spread from step 0
 has physically believable low-level and surface spread
 no spin-up = ensemble suitable for probabilistic nowcasting ?
 (also used to produce background covariances for deterministic 

3DVar, see posters)
 cost ~ 10% of AROME EPS forecast system
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AROME EDA: example of physically 
convincing initial spread
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AROME EDA: inflation

Plain EDA is underdispersive: lacks representation of system errors 
(in model & in 3DVar algorithm).

Adaptive inflation of background fields:

 compare variance of innovations cov(y-Hxb) with EDA-
predicted variances cov(M[xai]) 

 inflate EDA background ensemble as a function of discrepancy:

ei' = ei + a (ei - ei ), a>1 

 a~1.15 is applied in each 3DVar cycle (every 3 hours)
 improves short-range spread/skill consistency, better ensemble 

scores (reliability, CRPS, Brier, ROC).
 Impact is significant up to 24h-range.
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Arome-EDA inflation

(This plot made using ARPEGE global EDA)

T prior stdev

against Aircraft T

p
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Initial perturbations: cheaper alternatives to EDA

Consider IC perturbations of the form       xi = xa + a ( zi - zi )
 xi : initial condition of ensemble member i
 xa : deterministic high-resolution analysis
 zi : externally supplied ensemble
 a : scaling vertical profile (empirical tuning constant in mid troposphere, zero 

at top and bottom). Only applied to wind,T,ps.

Results:
 with zi = ARPEGE EDA : better than no perturb, but very underdispersive

 with zi = PEARP ICs : better than ARPEGE EDA (because of SVs ?)

 with zi = 24-h breeding of AROME EPS: performance close to PEARP ICs
 AROME EDA easy winner until ~9h range or at low levels, not so superior 

otherwise.
 ranking is clear for spread/skill consistency and CRPS, not so clear for ROC.

Things to try: 6-h breeding, surface breeding, adaptive tuning of a.
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Model error in AROME EPS

In atmosphere: SPPT stochastic physics tendencies (akin to 
ECMWF's)

 multiplicative noise on model tendencies,
 noise autocorrelations : univariate, large-scale, slowly evolving
 recently extended into surface boundary layer
 increases spread & rms errors, most probabilistic scores are 

improved.
 drawback: drying in low troposphere
 not yet in EDA (model error represented by adaptive inflation)

Also tried physics parameter perturbations:
 in microphysics : negligible impact
 in turbulence : more promising
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Impact of SPPT model error scheme

Reliability of precipitation over 5 weeks

event: rr>6mm/3h

with SPPT

without

(without loss of sharpness)
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Surface perturbations (work in progress)

random perturbation generator:

prescribed 2D Gaussian correlation

fc perturb T2m at 12h-range

resulting from small SST changes

found promising in sensitivity studies: SST, Wg, Rsmin, LAI, C
veg

, Zo
orog 
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Verification of short-range, high resolution 
ensembles

Lessons learned:
 Must use real observations, not analyses, as truth.
 Observation errors are significant
 Model biases are significant, with large diurnal cycle.
 Error growth over first 24h of forecasts is usually smaller than analysis 

errors.
 Observation availability limits significance of probabilistic scores 

(experiments are expensive, thus short)

 Usable: T2m, HU2m, 10m-wind, 10m-gusts, raingauge, aircraft wind & T
 Promising but more difficult: radar, satellite radiances (complex obs errors)
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Sample results from AROME EPS

 Scores
 High-impact Mediterranean precipitation
 Scattered thunderstorms 
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AROME-EPS sample scores (23 days in Oct 2011)

T2m ff10m prec3h U250

reliability

rank histogram

ROC
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Orographically-forced heavy convective 
precipitation (SE of France)

obs rr24 prob ARPEGE rr24>50mm prob AROME rr24>50mm

AROME ens mean (blue)

ratio spread/ensmean (grey)

=good guidance (clear signal, limited spread,

good detection, fewer false alarms than PEARP)

100km
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Scattered thunderstorms over flat terrain:
from members to probabilities

All the structure inside the

red area is sampling noise.

flight-level simulated reflectivity,

4 random members

90% quantile, computed

point-by-point using 12 members

The curse of convective dimensionality: in a situation like this,

~100 members would be needed for adequate sampling.

PDF dressing is needed, with a mislocation error model. 
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Summary

 
 nearly complete system setup (need surface perturbations)
 spread & reliability are mostly adequate,

• we need to improve statistical resolution
• low-level weaknesses on RH2m, ff10m
• convection needs some kind of smoothing

 
 ensemble size is a major performance driver. Key events cannot be 

simulated using a lower-resolution model.
 model errors mostly seem systematic ones (diurnal biases, structure 

of precip field), they have a clear effect on probabilistic scores.
 is there a good perturbation tuning methodology ? currently, we risk 

compensation between various types of perturbations.
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Thank you for your attention
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