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Overview of AROME-EPS

 AROME-France model: 2.5km grid, non-hydrostatic, 36-h range
 2011/2012: offline research experiments over several 20-day periods
 2012: real-time demonstration over small domain (HyMeX field experiment)
 2013: real-time preoperational over full domain
 2014: operational production, at least 8 members every 6 hours

target operational domain

2012 HyMeX demonstration
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AROME-EPS technical architecture
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Large-scale boundary conditions

AROME model is hourly coupled at lateral & upper boundaries.

Several options for selecting LBCs in a bigger global ensemble:
● random pick
● or, one PEARP multiphysics config per AROME member
● or, cluster PEARP forecasts using one of two methods:

  K-means, more faithful to original PDF
  hierarchical complete link (similar to COSMO-LEPS), maximizing 
interdistance between members

Results:
● impact on ensemble scores (ROC, Brier, CRPS) is tiny
● clustering improves a bit the high precip and wind scores, by 
promoting member diversity (ie sampling the PDF tails)
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Clustering example

 empirical idea: self-avoiding subsampling of forecast trajectories
 example of K-means clustering topology (plotted along 2 leading principal 

components)

35 ARPEGE members

7 selected couplers
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Initial perturbations: EDA in 
convective-scale model

Setup of AROME ensemble data analysis:
 3DVar+surface DA system is like deterministic DA, except :

• obs are randomly perturbed

• LBCs taken from global ARPEGE EDA (4DVar)

Results:

 provides acceptable forecast spread from step 0
 has physically believable low-level and surface spread
 no spin-up = ensemble suitable for probabilistic nowcasting ?
 (also used to produce background covariances for deterministic 

3DVar, see posters)
 cost ~ 10% of AROME EPS forecast system
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AROME EDA: example of physically 
convincing initial spread
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AROME EDA: inflation

Plain EDA is underdispersive: lacks representation of system errors 
(in model & in 3DVar algorithm).

Adaptive inflation of background fields:

 compare variance of innovations cov(y-Hxb) with EDA-
predicted variances cov(M[xai]) 

 inflate EDA background ensemble as a function of discrepancy:

ei' = ei + a (ei - ei ), a>1 

 a~1.15 is applied in each 3DVar cycle (every 3 hours)
 improves short-range spread/skill consistency, better ensemble 

scores (reliability, CRPS, Brier, ROC).
 Impact is significant up to 24h-range.
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Arome-EDA inflation

(This plot made using ARPEGE global EDA)

T prior stdev

against Aircraft T

p
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Initial perturbations: cheaper alternatives to EDA

Consider IC perturbations of the form       xi = xa + a ( zi - zi )
 xi : initial condition of ensemble member i
 xa : deterministic high-resolution analysis
 zi : externally supplied ensemble
 a : scaling vertical profile (empirical tuning constant in mid troposphere, zero 

at top and bottom). Only applied to wind,T,ps.

Results:
 with zi = ARPEGE EDA : better than no perturb, but very underdispersive

 with zi = PEARP ICs : better than ARPEGE EDA (because of SVs ?)

 with zi = 24-h breeding of AROME EPS: performance close to PEARP ICs
 AROME EDA easy winner until ~9h range or at low levels, not so superior 

otherwise.
 ranking is clear for spread/skill consistency and CRPS, not so clear for ROC.

Things to try: 6-h breeding, surface breeding, adaptive tuning of a.
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Model error in AROME EPS

In atmosphere: SPPT stochastic physics tendencies (akin to 
ECMWF's)

 multiplicative noise on model tendencies,
 noise autocorrelations : univariate, large-scale, slowly evolving
 recently extended into surface boundary layer
 increases spread & rms errors, most probabilistic scores are 

improved.
 drawback: drying in low troposphere
 not yet in EDA (model error represented by adaptive inflation)

Also tried physics parameter perturbations:
 in microphysics : negligible impact
 in turbulence : more promising



12

Impact of SPPT model error scheme

Reliability of precipitation over 5 weeks

event: rr>6mm/3h

with SPPT

without

(without loss of sharpness)
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Surface perturbations (work in progress)

random perturbation generator:

prescribed 2D Gaussian correlation

fc perturb T2m at 12h-range

resulting from small SST changes

found promising in sensitivity studies: SST, Wg, Rsmin, LAI, C
veg

, Zo
orog 
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Verification of short-range, high resolution 
ensembles

Lessons learned:
 Must use real observations, not analyses, as truth.
 Observation errors are significant
 Model biases are significant, with large diurnal cycle.
 Error growth over first 24h of forecasts is usually smaller than analysis 

errors.
 Observation availability limits significance of probabilistic scores 

(experiments are expensive, thus short)

 Usable: T2m, HU2m, 10m-wind, 10m-gusts, raingauge, aircraft wind & T
 Promising but more difficult: radar, satellite radiances (complex obs errors)
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Sample results from AROME EPS

 Scores
 High-impact Mediterranean precipitation
 Scattered thunderstorms 



16

AROME-EPS sample scores (23 days in Oct 2011)

T2m ff10m prec3h U250

reliability

rank histogram

ROC
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Orographically-forced heavy convective 
precipitation (SE of France)

obs rr24 prob ARPEGE rr24>50mm prob AROME rr24>50mm

AROME ens mean (blue)

ratio spread/ensmean (grey)

=good guidance (clear signal, limited spread,

good detection, fewer false alarms than PEARP)

100km
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Scattered thunderstorms over flat terrain:
from members to probabilities

All the structure inside the

red area is sampling noise.

flight-level simulated reflectivity,

4 random members

90% quantile, computed

point-by-point using 12 members

The curse of convective dimensionality: in a situation like this,

~100 members would be needed for adequate sampling.

PDF dressing is needed, with a mislocation error model. 
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Summary

 
 nearly complete system setup (need surface perturbations)
 spread & reliability are mostly adequate,

• we need to improve statistical resolution
• low-level weaknesses on RH2m, ff10m
• convection needs some kind of smoothing

 
 ensemble size is a major performance driver. Key events cannot be 

simulated using a lower-resolution model.
 model errors mostly seem systematic ones (diurnal biases, structure 

of precip field), they have a clear effect on probabilistic scores.
 is there a good perturbation tuning methodology ? currently, we risk 

compensation between various types of perturbations.
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Thank you for your attention
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