Local Ensemble Transform Kalman Filter assimilation scheme for the global atmospheric model SL-AV

Anna Shlyaeva, Mikhail Tolstykh, Vasily Mizyak Hydrometeorological Research Centre of Russia

mailto: shlyaeva@gmail.com

Outline

- Motivation
- Ensemble assimilation scheme
- SL-AV model
- Assimilation setup
- Current results
- Future plans

Motivation

Currently operational assimilation scheme:
 Optimal Interpolation

Developments:

- 3D-Var (Mikhail Tsyrulnikov et al), to be operational in the near future
- LETKF for SL-AV model (Anna Shlyaeva, Mikhail Tolstykh, Vasily Mizyak)

Assimilation scheme: LETKF

- LETKF (Local Ensemble Transform Kalman Filter, [Hunt et al, 2007])
 - Local: Explicit localization: using observations within localization distance from the gridpoint.

LETKF, Localization

LETKF, Transform

$$x \sim N(\overline{x}^b, P^b = X^b X^{bT})$$

$$J(x) = (x - \overline{x}^b)^T (P^b)^{-1} (x - \overline{x}^b) + (y^o - H(x))^T R^{-1} (y^o - H(x))$$

$$\int x = \overline{x}^b + X^b w$$

$$w \sim N(0, \widetilde{P}^b = (k-1)^{-1}I)$$

$$J(w) = (k-1)w^{T}w +$$

$$(y^{o} - \overline{y}^{b} - Y^{b}w)^{T}R^{-1}(y^{o} - \overline{y}^{b} - Y^{b}w)$$

LETKF, Transform

$$w \sim N(0, \widetilde{P}^b = (k-1)^{-1}I)$$

$$x = \overline{x}^b + X^b w$$

Analysis in the ensemble space:

$$\widetilde{P}^{a} = \left((k-1)I + Y^{bT} R^{-1} Y^{b} \right)^{-1}$$

$$\overline{w}^{a} = \widetilde{P}^{a} Y^{bT} R^{-1} \left(y^{o} - \overline{y}^{b} \right)$$

$$W^{a} = \left[(k-1)\widetilde{P}^{a} \right]^{1/2}$$

Analysis in the model space:

$$P^{a} = X^{b} \widetilde{P}^{a} X^{b}^{T}$$

$$\overline{x}^{a} = \overline{x}^{b} + X^{b} \overline{w}^{a}$$

$$x^{a(i)} = \overline{x}^{b} + X^{b} \left(\overline{w}^{a} + W^{a(i)} \right)$$

$$x \sim N(\overline{x}^b, P^b = X^b X^{bT})$$

SL-AV model

- Global atmospheric model, operational in Russia (Tolstykh, 2001)
- Resolution: 0.9x0.72, 28 vertical levels
- Dynamics: semi-implicit semi-Lagrangian finite difference; own development
- Parametrizations of subgrid-scale processes: mostly from ALADIN/LACE model

Observations assimilated

- Synops: T; ps; RH
 Adjustment to the model orography for the surface pressure
- Radiosondes: T, U, V (on standard levels)
- Satobs: U, V

Assimilation setup

Assimilation setup

• Ensemble size: 40-60

- Localization: Gaspari-Cohn localization
- Different localization distances at different latitudes and pressure levels (currently only different in vertical, 1500-4000)
- Vertical localization: in terms of pressure logarithm

Dealing with the ensemble spread underestimation

- Multiplicative inflation: constant factor
- Additive inflation
- Perturbed parameters (deep convection parametrization)

Some current results

Mean temperature RMS, NH (averaged over Sep.01-Sep.30 (assimilation start: Aug.01))

Mean temperature error

Parallel implementation (Vasily Mizyak)

Parallel implementation: Speed-up

SGI Altix 4700, 50 ensemble members

Future plans

- Assimilating humidity
- Adding more observations:
 - aireps
 - more AMVs
- Taking into account autocorrelations in AMVs
- 'Physical' methods to account for model error (perturbed parameters, different parametrizations, ...)

"Sure thing. You want a probability forecast, based on ... improbability data"

Thank you. Any questions?

shlyaeva@gmail.com

Temperature bias (averaged over NH)

Mean Temperature error

