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Pseudo-orbit gradient descent ensemble assimilation 

Outline 
•  The pseudo-orbit DA (PDA) methodology 

•  Differences with other methods 

•  Low-dimensional model examples 

•  Nowcasting with ensembles in the PMS and IMS 
•  Ikeda (2D) and Lorenz96 (18D) systems 
•  Comparison with EnKF, 4DVAR 

•  Extensions and further examples 

•  Open questions 

•  TEMIP??  J 



Pseudo-orbit gradient descent ensemble assimilation 

Motivation 
•  With data assimilation we aim to gain an estimate the current state 
 

•  Partial, noisy observations are incorporated into imperfect models 
•  Trajectories are generated, ideally consistent with measurements and model dynamics 

•  Some approaches place more weight on the observations 

•  Relying less on the model dynamics 

•  Some approaches place more weight on the model dynamics 

•  Making assumptions about the model error 

•  PDA aims at a better balance between observations and dynamics 

•  Placing more weight on model dynamics with minimal assumptions of form of model 
error 



Pseudo-orbit gradient descent ensemble assimilation 

Terminology 

•  Let xt           m be a model state vector 

•  X is a point in an m x n sequence space corresponding to a set of xt 

•  F(xt) = xt+1 

•  Maps xt at t into xt+1 
•  Defines a trajectory 

•  U defines a pseudo-orbit in sequence space with components ut          m 

•  Let st be an observation of state xt with some additive noise εt 

•  t = 1,2,...n 
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•  Start with a pseudo-orbit defined by the noisy observations 

Kevin Judd, Leonard Smith and Antje Weisheimer, Physica D 190 (2004) 

Pseudo-orbit gradient descent DA method 
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•  Start with a pseudo-orbit defined by the noisy observations 

•  Generate 1-step ahead trajectories 

Kevin Judd, Leonard Smith and Antje Weisheimer, Physica D 190 (2004) 

Pseudo-orbit gradient descent DA method 
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•  Start with a pseudo-orbit defined by the noisy observations 

•  Generate 1-step ahead trajectories 

•  Define mismatch function and minimise 

Kevin Judd, Leonard Smith and Antje Weisheimer, Physica D 190 (2004) 

Pseudo-orbit gradient descent DA method 
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•  Start with a pseudo-orbit defined by the noisy observations 

•  Generate 1-step ahead trajectories 

•  Define mismatch function and minimise 

Kevin Judd, Leonard Smith and Antje Weisheimer, Physica D 190 (2004) 
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•  Start with a pseudo-orbit defined by the noisy observations 

•  Generate 1-step ahead trajectories 

•  Define mismatch function and minimise 

Kevin Judd, Leonard Smith and Antje Weisheimer, Physica D 190 (2004) 

Pseudo-orbit gradient descent DA method 

CPDA (
!U) = F(!ut )!

!ut+1
2

t=1

n

"

0U = S

! = 2



•  Start with a pseudo-orbit defined by the noisy observations 

•  Generate 1-step ahead trajectories 

•  Define mismatch function and minimise 

•  The pseudo-orbit U converges to a trajectory as 

Pseudo-orbit gradient descent DA method 
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•  PDA is a smoother rather than a filter 

•  Limits the impact of single ‘bad’ observations 

•  There are no local minima  

•  Each global minimum is a trajectory of the model 

•  More reliance on model dynamics 

•  Advantageous for long assimilation windows 
•  Does not attempt to stick too closely to the observations 
•  Observations are used to define initial model pseudo-orbit 

•  Doesn’t assume structure of model error is known 
 
•  Fully nonlinear 

•  No assumptions/requirements for linear dynamics or Gaussian distributions 

Pseudo-orbit gradient descent DA - Advantages 



•  Like 4DVAR we must still generate an ensemble 

•  There are several approaches to generating candidate trajectories 

•  Start from perturbations on the observations and do PDA 
•  Sample the local space 

Generating ensembles 

t=0 
Candidate 
trajectories 

Reference trajectory 

Obs 



t=0 
Ensemble trajectory 

•  Like 4DVAR we must still generate an ensemble 

•  There are several approaches to generating candidate trajectories 

•  Start from perturbations on the observations and do PDA 
•  Sample the local space 

•  Use observations to weight candidate trajectories 

Generating ensembles 



Obs 

t=0 
Ensemble trajectory 

•  Like 4DVAR we must still generate an ensemble 

•  There are several approaches to generating candidate trajectories 

•  Start from perturbations on the observations and do PDA 
•  Sample the local space 

•  Use observations to weight candidate trajectories 

Generating ensembles 



Pseudo-orbit gradient descent DA in PMS 

•  Compare nowcast ensemble members from PDA and EnKF 

•  Ikeda system (2D) à Noise model N(0,0.4) 
•  Lorenz96 system (18D) à Noise model N(0,0.05) 
•  Generate 512 ensemble members 
 

•  Evaluate Ignorance score: 

•  Compare ensemble members from PDA and 4DVAR 

•  Ikeda system over different window lengths 
•  Ensemble members generated in identical way 

 



Pseudo-orbit gradient descent DA in PMS 

Nowcast ensemble (512 members) of the Ikeda map 
Pink: EnKF ensemble  Green: PDA ensemble  Blue: observation 



•  Compare nowcast ensemble members from PDA and EnKF 

•  Ikeda system à Noise model N(0,0.4) 
•  Lorenz96 system à Noise model N(0,0.05) 
•  Generate 512 ensemble members 
 

•  Evaluate Ignorance score: 

 

•  Lower and upper are 90th percent bootstrap resampling bounds 
•  Lower scores indicate more skill 

•  On average PDA outperforms EnKF by ~1.5 bit 

Pseudo-orbit gradient descent DA in PMS 

PDA PDA PDA PDA PDA 



•  Compare nowcast ensemble members from PDA and 4DVAR 

•  Ikeda system over different window lengths 
•  Ensemble members generated in identical way 

•  PDA ensembles closer to truth on average than 4DVAR over long 
window 

Pseudo-orbit gradient descent DA in PMS 

PDA PDA PDA 

PDA PDA PDA 



Examples 
•  Compare nowcast ensemble members from PDA and EnKF 

•  Ikeda model-system and Lorenz96 model-system pairs 
•  Model dynamics and and observations generated from different systems 

•  Find pseudo-orbit of imperfect model, f, consistent with observations 

•  A stopping criteria is needed to find a consistent reference trajectory 

The imperfect model scenario 

PDA stopping criteria for IMS 

•  Define implied noise: 

•  Define imperfection error: 



  Implied  
noise 

 Imperfection                  
error 

Distance 
from the 
“truth”  

Lorenz96 Ikeda 

PDA stopping criteria 

Pseudo-orbit gradient descent DA in IMS 

Pseudo-orbit statistics as a function of gradient descent iterations 



Pseudo-orbit gradient descent DA in IMS 

Ikeda system-model pair and Lorenz96 system-model pair, the noise 
model is N(0, 0.5) and N(0, 0.05) respectively. Lower and Upper are the 
90% bootstrap resampling bounds of Ignorance score 

Systems Ignorance Lower Upper 

EnKF GD EnKF GD EnKF GD 

Ikeda -2.67 -3.62 -2.77 -3.70 -2.52 -3.55 

Lorenz9
6 

-3.52 -4.13 -3.60 -4.18 -3.39 -4.08 

PDA PDA PDA 



Summary and open questions 

•  PDA is a fully nonlinear approach to DA 

•  It is demonstrated to outperform EnKF and 4DVAR in low dimensional 
examples 

•  Further examples include: 

•  Lagrangian DA in point-vortex system with partial observations 
•  Operational NOGAPS model 
•  Extensions to method including gradient-free descent (limited derivative information) 

•  PDA is designed for imperfect model scenario 

•  It provides informative estimates for model imperfection 
•  Requires a stopping criteria – How best to do this? 

•  Further comparisons and examples à TEMIP? 

Pseudo-orbit gradient descent ensemble assimilation 



Thank You! 
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