# Ensemble Forecast of Analyses With Uncertainty Estimation

 $\begin{array}{c} {\sf Vivien\ Mallet^{1,2},\ Gilles\ Stoltz^{3,4,1},\ Sergiy\ Zhuk^5,} \\ {\sf Alexander\ Nakonechniy^6} \end{array}$ 

<sup>1</sup>INRIA

<sup>2</sup>CEREA, joint laboratory ENPC - EDF R&D, Université Paris-Est

<sup>3</sup>DMA, École normale supérieure, CNRS

<sup>4</sup>HEC Paris

<sup>5</sup>IBM Research, Dublin

<sup>6</sup>Taras Shevchenko National University of Kiev

International Conference on Ensemble Methods in Geophysical Sciences
Toulouse, November 2012

## Objective

#### To produce the best forecast of a model state using

- ullet a data assimilation system, which produces analysis state vectors  $\mathbf{z}_t$  using one or several models, observations and errors description; and
- a *given* ensemble of forecasts  $\mathbf{x}_t^{(m)}$ , possibly provided by the data assimilation system.

## Ensemble Forecast of Analyses (EFA)

#### **Notation**

- $\mathbf{x}_t^{(m)}$  State vector forecast by model/member m at time t
- $\mathbf{z}_t$  Analysis state vector at time t

#### Strategy

- Forecasting the analysis state vector z<sub>t</sub> computed by the data assimilation system
  - Rationale: The analyses are the best a posteriori knowledge of the state
  - Aggregated forecast:

$$\widehat{z}_{t,i} = \sum_{m=1}^{M} w_{t,i}^{(m)} x_{t,i}^{(m)}$$

• Success if the ensemble forecasts  $\widehat{\mathbf{z}}_t$  beat any sequence of forecasts  $\mathbf{x}_t^{(m)}$ 

## Ensemble Forecast of Analyses (EFA)

#### **Notation**

 $\mathbf{x}_t^{(m)}$  State vector forecast by model/member m at time t

 $\mathbf{z}_t$  Analysis state vector at time t

#### Principle

To produce an aggregated forecast  $\hat{\mathbf{z}}_t$  as efficient as possible, using the linear combination:

$$\widehat{z}_{t,i} = \sum_{m=1}^{M} w_{t,i}^{(m)} x_{t,i}^{(m)}$$

## Ensemble Forecast of Analyses (EFA)

#### **Notation**

 $\mathbf{x}_t^{(m)}$  State vector forecast by model/member m at time t

 $\mathbf{z}_t$  Analysis state vector at time t

#### Principle

To produce an aggregated forecast  $\hat{\mathbf{z}}_t$  as efficient as possible, using the linear combination:

$$\widehat{z}_{t,i} = \sum_{m=1}^{M} w_{t,i}^{(m)} x_{t,i}^{(m)}$$

$$egin{array}{lll} egin{array}{lll} egin{arra$$

## EFA Using Machine Learning

#### Computing the Aggregation Weights

• Ridge regression with discount in time ( $\lambda > 0$  and  $\beta > 0$ ):

$$\forall i \quad \mathbf{w}_{t,i} = \underset{\mathbf{v} \in \mathbb{R}^M}{\operatorname{argmin}} \left[ \lambda \|\mathbf{v}\|_2^2 + \sum_{s=1}^{s < t} \left( \frac{\beta}{(t-s)^2} + 1 \right) \left( z_{s,i} - \sum_{m=1}^M v^{(m)} x_{s,i}^{(m)} \right)^2 \right]$$

## Theoretical Comparison With the Best Linear Combination With Constant Weights

$$\frac{1}{t} \sum_{s=1}^{s \le t} \left( z_{s,i} - \sum_{m=1}^{M} w_{s,i}^{(m)} x_{s,i}^{(m)} \right)^{2}$$

$$- \underset{\mathbf{v} \in \mathbb{R}^{M}}{\operatorname{argmin}} \left[ \frac{1}{t} \sum_{s=1}^{s \le t} \left( z_{s,i} - \sum_{m=1}^{M} v^{(m)} x_{s,i}^{(m)} \right)^{2} \right] \lesssim \mathcal{O}\left( \frac{\ln t}{t} \right)$$

## **EFA Using Filtering**

#### Formulation in Terms of Filtering

• State equation:

$$\mathbf{w}_{0,i} = \mathbf{c} + \mathbf{e}_i$$
  $\mathbf{w}_{t+1,i} = \mathbf{A}\mathbf{w}_{t,i} + (\mathbf{I} - \mathbf{A})\mathbf{c} + \mathbf{e}_{t,i}$ 

• "Observations" (i.e., analyses in our case):

$$z_{t,i} = \mathbf{E}_{t,i} \mathbf{w}_{t,i} + \eta_{t,i}$$
$$\mathbf{E}_{t,i} = \left(x_{t,i}^{(1)}, \dots, x_{t,i}^{(m)}\right)$$

## **EFA Using Filtering**

#### Kalman Filtering

- Assignment of variances to initial weight errors, (weight) model errors and analyses errors
- The filter computes a variance  $P_{t,i}$  for the weight error at time t
- The aggregated forecast has variance  $\mathbf{E}_{t,i}\mathbf{P}_t\mathbf{E}_{t,i}^T$

#### Minimax Filtering

Bounds on errors, described by an ellipsoid

$$\mathbf{e}_{i}^{\mathrm{T}}\mathbf{Q}^{-1}\mathbf{e}_{i} + \sum_{t=0}^{T-1}\mathbf{e}_{t,i}^{\mathrm{T}}\mathbf{Q}_{t}^{-1}\mathbf{e}_{t,i} + \sum_{t=0}^{T}A_{t}^{-1}\eta_{t,i}^{2} \leq 1$$

- Admissible weights are compatible with weight model, "observations" and errors bounds
- Weights defined such that, for any direction  $\ell$ ,  $\sup_{\mathbf{e},\mathbf{e}_0,\dots,\mathbf{e}_{t-1},\eta_0,\dots,\eta_t} \ell^{\mathrm{T}}(\mathbf{w}_t^{\mathrm{true}} \widehat{\mathbf{w}}_t) \leq \sup_{\mathbf{e},\mathbf{e}_0,\dots,\mathbf{e}_{t-1},\eta_0,\dots,\eta_t} \ell^{\mathrm{T}}(\mathbf{w}_t^{\mathrm{true}} \mathbf{w}_t)$

## Application to Air Quality Forecast

#### Simulations Description

- Forecasting ground-level ozone at 15h00 UTC (peak) over Europe
- Ensemble with 20 members
- One reference member in the ensemble benefits from data assimilation and actually provides the analyses



## Application to Air Quality Forecast

#### Simulations Description

- Forecasting ground-level ozone at 15h00 UTC (peak) over Europe
- Ensemble with 20 members
- One reference member in the ensemble benefits from data assimilation and actually provides the analyses

## RMSE ( $\mu g \ m^{-3}$ ), With Respect to Analyses and Observations

|                                      | Analyses | Observations |
|--------------------------------------|----------|--------------|
| Reference model without assimilation | 15.8     | 21.6         |
| Reference model with assimilation    | 13.5     | 19.8         |
| EFA with machine learning            | 11.3     | 15.6         |
| EFA with filtering                   | 10.9     | 15.7         |

## Ozone Maps ( $\mu g m^{-3}$ ) Averaged For One Year



## Uncertainty Map (Standard Deviation in $\mu g m^{-3}$ )



## Ozone in One Grid Cell ( $\mu g m^{-3}$ )



## Ozone in One Grid Cell ( $\mu g m^{-3}$ )



#### Conclusions

#### Ensemble Forecast of Analyses

- With machine learning: guaranteed to beat any linear combination with constant weights
- With filtering: access to uncertainty quantification

#### Some Perspectives

- Machine learning with robust uncertainty quantification
- Some focus on aggregation of fields (with patterns)
- Ensemble forecast of analyses: Coupling data assimilation and sequential aggregation. Mallet, JGR, 2010.
- Ozone ensemble forecast with machine learning algorithms. Mallet, Stoltz & Mauricette, JGR, 2009.
- Air quality simulations with Polyphemus, http://cerea.enpc.fr/polyphemus/
- Algorithms from data assimilation library Verdandi, http://verdandi.gforge.inria.fr/

### Time Evolution of the Weights

#### Machine Learning and Filtering



