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Objective

To produce the best forecast of a model state using
a data assimilation system, which produces analysis state vectors zt
using one or several models, observations and errors description; and
a given ensemble of forecasts x(m)

t , possibly provided by the data
assimilation system.
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Ensemble Forecast of Analyses (EFA)

Notation
x(m)

t State vector forecast by model/member m at time t
zt Analysis state vector at time t

Strategy
Forecasting the analysis state vector zt computed by the data
assimilation system

Rationale: The analyses are the best a posteriori knowledge of the state
Aggregated forecast:

ẑt,i =
M∑

m=1
w (m)

t,i x (m)
t,i

Success if the ensemble forecasts ẑt beat any sequence of forecasts x(m)
t

Mallet, Stoltz, Zhuk, Nakonechniy Ensemble Forecast of Analyses November 2012 3 / 14



Ensemble Forecast of Analyses (EFA)

Notation
x(m)

t State vector forecast by model/member m at time t
zt Analysis state vector at time t

Principle
To produce an aggregated forecast ẑt as efficient as possible, using the
linear combination:

ẑt,i =
M∑

m=1
w (m)

t,i x (m)
t,i

t − 2 t − 1 t t + 1
x(m)

t−2 x(m)
t−1 x(m)

t x(m)
t+1

w(m)
t−2 → ẑt−2 w(m)

t−1 → ẑt−1 w(m)
t → ẑt w(m)

t+1 → ẑt+1
yt−2 → zt−2 yt−1 → zt−1 yt → zt yt+1 → zt+1
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EFA Using Machine Learning

Computing the Aggregation Weights
Ridge regression with discount in time (λ > 0 and β > 0):

∀i wt,i = argmin
v∈RM

λ‖v‖22 + s<t∑
s=1

(
β

(t − s)2 + 1
)(

zs,i −
M∑

m=1
v (m)x (m)

s,i

)2
Theoretical Comparison With the Best Linear Combination With
Constant Weights

1
t

s≤t∑
s=1

(
zs,i −

M∑
m=1

w (m)
s,i x (m)

s,i

)2

− argmin
v∈RM

1
t

s≤t∑
s=1

(
zs,i −

M∑
m=1

v (m)x (m)
s,i

)2 > O
( ln t

t

)
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EFA Using Filtering

Formulation in Terms of Filtering
State equation:

w0,i = c + ei

wt+1,i = Awt,i + (I− A)c + et,i

“Observations” (i.e., analyses in our case):
zt,i = Et,iwt,i + ηt,i

Et,i =
(
x (1)

t,i , . . . , x
(m)
t,i

)
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EFA Using Filtering

Kalman Filtering
Assignment of variances to initial weight errors, (weight) model errors
and analyses errors
The filter computes a variance Pt,i for the weight error at time t
The aggregated forecast has variance Et,iPtET

t,i

Minimax Filtering
Bounds on errors, described by an ellipsoid

eT
i Q−1ei +

T−1∑
t=0

eT
t,iQ−1

t et,i +
T∑

t=0
A−1

t η2
t,i ≤ 1

Admissible weights are compatible with weight model, “observations”
and errors bounds
Weights defined such that, for any direction `,

sup
e,e0,...,et−1,η0,...,ηt

`T(wtrue
t − ŵt) ≤ sup

e,e0,...,et−1,η0,...,ηt
`T (wtrue

t −wt)
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Application to Air Quality Forecast

Simulations Description
Forecasting ground-level ozone at 15h00 UTC (peak) over Europe
Ensemble with 20 members
One reference member in the ensemble benefits from data
assimilation and actually provides the analyses
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Application to Air Quality Forecast

Simulations Description
Forecasting ground-level ozone at 15h00 UTC (peak) over Europe
Ensemble with 20 members
One reference member in the ensemble benefits from data
assimilation and actually provides the analyses

RMSE (µg m−3 ), With Respect to Analyses and Observations
Analyses Observations

Reference model without assimilation 15.8 21.6
Reference model with assimilation 13.5 19.8
EFA with machine learning 11.3 15.6
EFA with filtering 10.9 15.7
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Ozone Maps (µg m−3 ) Averaged For One Year
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Uncertainty Map (Standard Deviation in µg m−3 )
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Ozone in One Grid Cell (µg m−3 )
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Ozone in One Grid Cell (µg m−3 )
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Conclusions
Ensemble Forecast of Analyses

With machine learning: guaranteed to beat any linear combination
with constant weights
With filtering: access to uncertainty quantification

Some Perspectives
Machine learning with robust uncertainty quantification
Some focus on aggregation of fields (with patterns)

Ensemble forecast of analyses: Coupling data assimilation and
sequential aggregation. Mallet, JGR, 2010.
Ozone ensemble forecast with machine learning algorithms. Mallet,
Stoltz & Mauricette, JGR, 2009.
Air quality simulations with Polyphemus,
http://cerea.enpc.fr/polyphemus/
Algorithms from data assimilation library Verdandi,
http://verdandi.gforge.inria.fr/
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Time Evolution of the Weights
Machine Learning and Filtering
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