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Statistical postprocessing of numerical weather prediction

(NWP) ensembles

NWP ensembles are subject to biases and typically they show a

lack of calibration

thus, some form of statistical postprocessing is required in or-

der to properly quantify uncertainty, and generate calibrated and

sharp predictive distributions

major approaches to the statistical postprocessing of NWP en-

sembles include

• Bayesian model averaging (BMA), which fits a mixture den-

sity as predictive PDF, where each ensemble member is asso-

ciated with a kernel function, using a weight that reflects the

member’s skill (Raftery et al. 2005)

• ensemble model output statistics (EMOS) or nonhomo-

geneous Gaussian regression (NGR), which fits a single,

parametric predictive PDF using summary statistics from the

ensemble (Gneiting et al. 2005)



BMA and EMOS/NGR for temperature

consider an ensemble forecast, x1, . . . , xM, for surface temper-

ature, y, at a given location and look-ahead time

• BMA employs Gaussian kernels with a linearly bias-corrected

mean, i.e., the BMA predictive PDF is the Gaussian mixture

f(y |x1, . . . , xM) =
M∑

m = 1

wmN (a0m + a1mxm, σ
2)

with BMA weights w1, . . . , wM, bias parameters a0m, . . . , a0M and

a1m, . . . , a1M and a common spread parameter σ2

• EMOS/NGR employs a single Gaussian predictive PDF, in

that

f(y |x1, . . . , xM) = N (c0 + c1x1 + · · ·+ cMxM , d0 + d1s
2)

with location parameters c0 and c1, . . . , cM, and spread param-

eters d0 and d1, where s2 is the ensemble variance

in our experience, the two approaches yield nearly the same predic-

tive performance, with BMA being the more flexible and EMOS/

NGR being the more parsimonious method



BMA and EMOS/NGR for univariate weather quantities

Bayesian model averaging (BMA)

Variable Range Kernel Mean Variance

Temperature y ∈ R Normal a0m + a1mxm σ2

Pressure y ∈ R Normal a0m + a1mxm σ2

Precipitation accumulation y1/3 ∈ R
+ Gamma a0m + a1mxm b0 + b1xm

Wind speed y ∈ R
+ Gamma a0m + a1mxm b0 + b1xm

Visibility y ∈ [0,1] Beta a0m + a1mx
1/2
m b0 + b1x

1/2
m

Ensemble model output statistics (EMOS/NGR)

Variable Range Density Location Scale

Temperature y ∈ R Normal c0 + c1x1 + · · ·+ cmxm d0 + d1s2

Pressure y ∈ R Normal c0 + c1x1 + · · ·+ cmxm d0 + d1s2

Wind speed y ∈ R
+ Truncated normal c0 + c1x1 + · · ·+ cmxm d0 + d1s2



Example: EMOS/NGR for wind speed

48-hour EMOS/NGR postprocessed predictive PDFs of wind

speed based on the eight-member University of Washington Meso-

scale Ensemble (UWME; Eckel and Mass 2005)

48-hour UWME forecast of maximum wind speed valid August 7, 2003



Example: EMOS/NGR for wind speed

48-hour EMOS/NGR postprocessed predictive PDFs of wind

speed over the US Pacific Northwest (Thorarinsdottir and Gneit-

ing 2010)

the EMOS/NGR predictive PDF is truncated normal,

f(y |x1, . . . , x8) = N[0,∞)(c0 + c1x1 + · · ·+ c8x8, d0 + d1s
2),

with location parameters c0 and c1, . . . , c8, and spread parameters

d0 and d1, where s2 is the ensemble variance

minimum CRPS estimation of the EMOS/NGR parameters using

a rolling training period

• regional EMOS/NGR: training data from all stations used,

a single set of parameters, 20-day training period

• local EMOS/NGR: training data from station at hand only,

one set of parameters for each station, 40-day training period



Example: EMOS/NGR for wind speed

48-hour local EMOS postprocessed predictive PDF valid Au-

gust 15, 2008 at The Dalles, Oregon

AVN CMC ETA GSP JMA NGP TCW UKM

5.11 5.85 6.25 3.82 3.94 6.05 7.17 5.39

c0 c1 c2 c3 c4 c5 c6 c7 c8 d0 d1
3.12 0.00 0.12 0.31 0.05 0.64 0.00 0.00 0.00 7.08 0.00

Wind Speed in Knots
0 5 10 15 20



Example: EMOS/NGR for wind speed

48-hour local EMOS postprocessed predictive PDFs at The
Dalles, Oregon
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predictive performance in calendar year 2008

MAE CRPS

UWME 4.42 3.53

Regional EMOS/NGR 3.96 2.85

Local EMOS/NGR 3.65 2.61



Shortcomings of postprocessed forecasts

BMA and EMOS/NGR apply to a single weather variable at a

single location and a single look-ahead time only

thus, the postprocessed PDFs fail to account for multivariate

dependence structures

a pressing need now is to develop methods that yield physi-

cally realistic and consistent postprocessed ensemble forecasts

of spatio-temporal weather trajectories

• for multiple weather variables at multiple locations and

multiple look-ahead times

• in potentially very high dimensions: NWP models have mil-

lions of outputs

• key applications include air traffic control (SESAR), ship

routeing and flood management



Example: ECMWF ensemble

24-hour ECMWF ensemble forecast of temperature and pres-

sure at Berlin and Hamburg valid May 27, 2010 before and after

BMA postprocessing



Theoretical background: Sklar’s theorem

BMA and EMOS/NGR apply to a single weather variable at a

single location and a single look-ahead time only

yielding a univariate postprocessed predictive PDF, Fl, for the

univariate weather quantity, Yl, where l = 1, . . . , L

with each multi-index l = (i, j, k) referring to weather variable i,

location j and look-ahead time k

we seek a physically realistic and consistent multivariate or joint

predictive PDF, F , with margin Fl for each l = 1, . . . , L

Sklar’s theorem (1959): every multivariate PDF F with margins

F1, . . . , FL can be written as

F(y1, . . . , yL) = C(F1(y1), . . . , FL(yL))

where C : [0,1]L → [0,1] is a copula, i.e., a multivariate PDF with

standard uniform margins



Ensemble copula coupling

in order to issue physically realistic and consistent postprocessed

ensemble forecasts of spatio-temporal weather trajectories

it remains to specify and fit a suitable copula C : [0,1]L → [0,1],
as reviewed by Schölzel and Friederichs (2008)

if the dimension L is small, or if specific structure can be exploited,

parametric familes of copulas work well

• Gel et al. (2004), Möller et al. (2012) and Schuhen et al. (2012)

use Gaussian copulas

• parametric or semi-parametric alternatives include elliptical,

Archimedean, hierarchical Archimedean and pair copulas

if L is huge and no specific structure can be exploited, we need

to resort to non-parametric approaches, with ensemble copula

coupling (ECC) being a particularly attractive option

origins of ECC lie in the work of Clark et al. (2004), Bremnes

(2007) and Krzysztofowicz and Toth (2008) and a conversation

with Tom Hamill (2009)



Ensemble copula coupling

given an NWP ensemble with M members for the weather quan-

tity Yl, where l = 1, . . . , L, ECC proceeds in three steps

univariate postprocessing: for each l = 1, . . . , L obtain a post-

processed predictive PDF, Fl

quantization: for each l = 1, . . . , L, obtain a discrete sample of

size M from Fl

ECC-P: ensemble mapping approach of Pinson (2012)

ECC-Q: use M equally spaced Quantiles of Fl at the levels

(2m− 1)/(2m), where m = 1, . . . ,M

ECC-R: draw a Random sample of size M from Fl

ensemble reordering: take the function C : [0,1]L → [0,1] in

Sklar’s theorem to be the empirical copula of the ensemble,

and apply it to the postprocessed ensemble



Ensemble copula coupling

the postprocessed ECC ensemble retains the flow-dependent

multivariate rank dependence structure in the NWP ensemble

it does so in the same way that the Schaake shuffle (Clark et

al. 2004) adopts a dependence structure from observational data

proposed by Bremnes (2007), Krzysztofowicz and Toth (2008)

and in yesterday’s talk by Jonathan Flowerdew, who explains the

ensemble reordering very nicely (Flowerdew 2012, p. 17):

“The key to preserving spatial, temporal and inter-variable structure
is how this set of values is distributed among ensemble members. One
can always construct ensemble members by sampling from the cali-
brated PDF, but this alone would produce spatially noisy fields lacking
the correct correlations. Instead, the values are assigned to ensemble

members in the same order as the values from the raw ensemble: the
member with the locally highest rainfall remains locally highest, but
with a calibrated rainfall magnitude.”

for formulas, the copula connection and verification results, see

poster 87 by Roman Schefzik



Example: ECMWF ensemble

24-hour ECMWF ensemble forecast of temperature and pres-

sure at Berlin and Hamburg valid May 27, 2010 before and after

BMA postprocessing



Example: ECMWF ensemble

24-hour ECMWF ensemble forecast of temperature and pres-

sure at Berlin and Hamburg valid May 27, 2010 before and after

BMA postprocessing and ECC



24-h ECMWF EPS 2-m temperature 24–25 Aug 2011



Discussion: Ensemble copula coupling (ECC)

the term ensemble copula coupling (ECC) refers to a general

three-stage approach to ensemble postprocessing

univariate postprocessing: apply state of the art statistical

postprocessing techniques to obtain calibrated and sharp uni-

variate predictive PDFs

quantization: sample from the postprocessed univariate predic-

tive PDFs, to obtain a statistical ensemble of the same size as

the raw ensemble

ensemble reordering: merge the univariate statistical ensembles

into multivariate spatio-temporal weather trajectories, by using

the empirical copula of the original ensemble



Discussion: Ensemble copula coupling (ECC)

the ECC ensemble retains the flow-dependent multivariate rank

dependence structure in the raw ensemble

some limitations

• the ECC ensemble is constrained to have the same (small)

number of members as the raw ensemble

• perfect model assumption with respect to the rank depen-

dence structure, which frequently is in need of postprocesss-

ing, too (poster 85, Martin Leutbecher)

• this need is addressed by Möller et al. (2012) and Schuhen

et al. (2012), who apply a Gaussian copula approach to ob-

tain calibrated probabilistic forecasts of multivariate weather

quantities, such as wind vectors (poster 52, Isabel Albers)



Discussion: Ensemble copula coupling (ECC)

the ECC ensemble retains the flow-dependent multivariate rank

dependence structure in the raw ensemble

lots of opportunities

• theoretical backing by Sklar’s theorem

• works with any univariate postprocessing technique, such as

EMOS/NGR, BMA or analog methods (talk by Luca delle

Monache; poster 19, Georg Mayr; poster 20, Tony Eckel)

• the ECC approach is straightforward to explain, understand,

and implement

• free lunch — negligible computational effort, as compared

to running an NWP ensemble or statistical postprocessing

very broadly applicable to yield physically consistent, calibrated

and sharp ensemble forecasts of spatio-temporal weather tra-

jectories



24-h ECMWF EPS 2-m temperature 24–25 Aug 2011


