Ensemble Copula Coupling:

Towards Physically Consistent, Calibrated Probabilistic Forecasts of Spatio-Temporal Weather Trajectories

Tilmann Gneiting and Roman Schefzik

Institut für Angewandte Mathematik Universität Heidelberg, Germany

Thordis L. Thorarinsdottir

Norwegian Computing Center Oslo, Norway

Statistical postprocessing of numerical weather prediction (NWP) ensembles

NWP ensembles are subject to biases and typically they show a lack of calibration

thus, some form of **statistical postprocessing** is required in order to properly quantify uncertainty, and generate **calibrated** and **sharp** predictive distributions

major approaches to the **statistical postprocessing** of **NWP ensembles** include

- **Bayesian model averaging (BMA)**, which fits a mixture density as predictive PDF, where each ensemble member is associated with a kernel function, using a weight that reflects the member's skill (Raftery et al. 2005)
- ensemble model output statistics (EMOS) or nonhomogeneous Gaussian regression (NGR), which fits a single, parametric predictive PDF using summary statistics from the ensemble (Gneiting et al. 2005)

BMA and **EMOS/NGR** for temperature

consider an ensemble forecast, x_1, \ldots, x_M , for surface temperature, y, at a given location and look-ahead time

• **BMA** employs Gaussian kernels with a linearly bias-corrected mean, i.e., the BMA predictive PDF is the **Gaussian mixture**

$$f(y | x_1, ..., x_M) = \sum_{m=1}^M w_m \mathcal{N}(a_{0m} + a_{1m} x_m, \sigma^2)$$

with BMA weights w_1, \ldots, w_M , bias parameters a_{0m}, \ldots, a_{0M} and a_{1m}, \ldots, a_{1M} and a common spread parameter σ^2

 EMOS/NGR employs a single Gaussian predictive PDF, in that

$$f(y | x_1, \ldots, x_M) = \mathcal{N}(c_0 + c_1 x_1 + \cdots + c_M x_M, d_0 + d_1 s^2)$$

with location parameters c_0 and c_1, \ldots, c_M , and spread parameters d_0 and d_1 , where s^2 is the ensemble variance

in our experience, the two approaches yield nearly the same predictive performance, with **BMA** being the more **flexible** and **EMOS**/ **NGR** being the more **parsimonious** method

BMA and **EMOS/NGR** for univariate weather quantities

Bayesian model averaging (BMA)

Variable	Range	Kernel	Mean	Variance
Temperature	$y\in\mathbb{R}$	Normal	$a_{0m} + a_{1m} x_m$	σ^2
Pressure	$y \in \mathbb{R}$	Normal	$a_{0m} + a_{1m} x_m$	σ^2
Precipitation accumulation	$y^{1/3} \in \mathbb{R}^+$	Gamma	$a_{0m} + a_{1m} x_m$	$b_0 + b_1 x_m$
Wind speed	$y \in \mathbb{R}^+$	Gamma	$a_{0m} + a_{1m} x_m$	$b_0 + b_1 x_m$
Visibility	$y \in [0,1]$	Beta	$a_{0m} + a_{1m} x_m^{1/2}$	$b_0 + b_1 x_m^{1/2}$

Ensemble model output statistics (EMOS/NGR)

Variable	Range	Density	Location	Scale
Temperature	$y \in \mathbb{R}$	Normal	$c_0 + c_1 x_1 + \dots + c_m x_m$	$d_0 + d_1 s^2$
Pressure	$y \in \mathbb{R}$	Normal	$c_0 + c_1 x_1 + \dots + c_m x_m$	$d_0 + d_1 s^2$
Wind speed	$y \in \mathbb{R}^+$	Truncated normal	$c_0 + c_1 x_1 + \dots + c_m x_m$	$d_0 + d_1 s^2$

48-hour EMOS/NGR postprocessed predictive PDFs of wind speed based on the eight-member University of Washington Meso-scale Ensemble (UWME; Eckel and Mass 2005)

48-hour UWME forecast of maximum wind speed valid August 7, 2003

48-hour EMOS/NGR postprocessed predictive PDFs of wind speed over the US Pacific Northwest (Thorarinsdottir and Gneiting 2010)

the **EMOS/NGR** predictive PDF is **truncated normal**,

 $f(y | x_1, \ldots, x_8) = \mathcal{N}_{[0,\infty)}(c_0 + c_1 x_1 + \cdots + c_8 x_8, d_0 + d_1 s^2),$

with location parameters c_0 and c_1, \ldots, c_8 , and spread parameters d_0 and d_1 , where s^2 is the ensemble variance

minimum CRPS estimation of the EMOS/NGR parameters using a rolling training period

- regional EMOS/NGR: training data from all stations used, a single set of parameters, 20-day training period
- **local EMOS/NGR**: training data from station at hand only, one set of parameters for each station, 40-day training period

48-hour **local EMOS** postprocessed **predictive PDF** valid August 15, 2008 at **The Dalles, Oregon**

	AVN 5.11	CMC 5.85	ETA 6.25	GSP 3.82	JMA 3.94	NGP 6.05	TCW 7.17	UKM 5.39		
c ₀	<i>c</i> ₁	c ₂	с _з	c ₄	<i>с</i> 5	c ₆	<i>с</i> 7	c ₈	d ₀	<i>d</i> ₁
3.12	0.00	0.12	0.31	0.05	0.64	0.00	0.00	0.00	7.08	0.00

48-hour local EMOS postprocessed predictive PDFs at The Dalles, Oregon

predictive performance in calendar year 2008

	MAE	CRPS
UWME	4.42	3.53
Regional EMOS/NGR	3.96	2.85
Local EMOS/NGR	3.65	2.61

Shortcomings of postprocessed forecasts

BMA and EMOS/NGR apply to a **single weather variable** at a **single location** and a **single look-ahead time** only

thus, the postprocessed PDFs fail to account for **multivariate dependence** structures

a pressing need now is to develop methods that yield **physically realistic** and **consistent** postprocessed ensemble forecasts of **spatio-temporal weather trajectories**

- for multiple weather variables at multiple locations and multiple look-ahead times
- in potentially very high dimensions: NWP models have millions of outputs
- key applications include air traffic control (SESAR), ship routeing and flood management

Example: ECMWF ensemble

24-hour **ECMWF ensemble** forecast of **temperature** and **pressure** at Berlin and Hamburg valid May 27, 2010 before and **after** BMA **postprocessing**

Theoretical background: Sklar's theorem

BMA and EMOS/NGR apply to a single weather variable at a single location and a single look-ahead time only

yielding a **univariate** postprocessed **predictive PDF**, F_l , for the univariate weather quantity, Y_l , where l = 1, ..., L

with each multi-index l = (i, j, k) referring to weather variable *i*, location *j* and look-ahead time *k*

we seek a **physically realistic** and consistent **multivariate** or **joint** predictive **PDF**, *F*, with margin F_l for each l = 1, ..., L

Sklar's theorem (1959): every multivariate PDF F with margins F_1, \ldots, F_L can be written as

$$F(y_1,\ldots,y_L)=C(F_1(y_1),\ldots,F_L(y_L))$$

where $C : [0, 1]^L \rightarrow [0, 1]$ is a **copula**, i.e., a multivariate PDF with standard **uniform margins**

Ensemble copula coupling

in order to issue **physically realistic** and **consistent** postprocessed ensemble forecasts of **spatio-temporal weather trajectories**

it remains to specify and fit a suitable **copula** $C : [0, 1]^L \rightarrow [0, 1]$, as reviewed by Schölzel and Friederichs (2008)

if the dimension L is small, or if specific structure can be exploited, parametric familes of copulas work well

- Gel et al. (2004), Möller et al. (2012) and Schuhen et al. (2012) use **Gaussian** copulas
- parametric or semi-parametric alternatives include elliptical, Archimedean, hierarchical Archimedean and pair copulas

if L is huge and no specific structure can be exploited, we need to resort to **non-parametric** approaches, with **ensemble copula coupling (ECC)** being a particularly attractive option

origins of ECC lie in the work of Clark et al. (2004), Bremnes (2007) and Krzysztofowicz and Toth (2008) and a conversation with Tom Hamill (2009)

Ensemble copula coupling

given an NWP ensemble with M members for the weather quantity Y_l , where l = 1, ..., L, ECC proceeds in three steps

univariate postprocessing: for each l = 1, ..., L obtain a postprocessed predictive PDF, F_l

quantization: for each l = 1, ..., L, obtain a discrete **sample** of size M from F_l

ECC-P: ensemble mapping approach of **P**inson (2012)

ECC-Q: use *M* equally spaced Quantiles of F_l at the levels (2m-1)/(2m), where m = 1, ..., M

ECC-R: draw a **R**andom sample of size M from F_l

ensemble reordering: take the function $C : [0,1]^L \rightarrow [0,1]$ in Sklar's theorem to be the **empirical copula** of the **ensemble**, and apply it to the postprocessed ensemble

Ensemble copula coupling

the postprocessed **ECC** ensemble retains the **flow-dependent** multivariate **rank dependence** structure in the NWP **ensemble**

it does so in the same way that the **Schaake shuffle** (Clark et al. 2004) adopts a dependence structure from **observational data**

proposed by Bremnes (2007), Krzysztofowicz and Toth (2008) and in yesterday's talk by Jonathan Flowerdew, who explains the **ensemble reordering** very nicely (Flowerdew 2012, p. 17):

"The key to preserving spatial, temporal and inter-variable structure is how this set of values is distributed among ensemble members. One can always construct ensemble members by sampling from the calibrated PDF, but this alone would produce spatially noisy fields lacking the correct correlations. Instead, *the values are assigned to ensemble members in the same order as the values from the raw ensemble:* the member with the locally highest rainfall remains locally highest, but with a calibrated rainfall magnitude."

for formulas, the copula connection and verification results, see poster 87 by Roman Schefzik

Example: ECMWF ensemble

24-hour **ECMWF ensemble** forecast of **temperature** and **pressure** at Berlin and Hamburg valid May 27, 2010 before and **after** BMA **postprocessing**

Example: ECMWF ensemble

24-hour ECMWF ensemble forecast of temperature and pressure at Berlin and Hamburg valid May 27, 2010 before and after BMA postprocessing and ECC

24-h ECMWF EPS 2-m temperature 24–25 Aug 2011

Discussion: Ensemble copula coupling (ECC)

the term **ensemble copula coupling (ECC)** refers to a general **three-stage** approach to ensemble postprocessing

univariate postprocessing: apply state of the art statistical postprocessing techniques to obtain calibrated and sharp univariate predictive PDFs

quantization: sample from the postprocessed univariate predictive PDFs, to obtain a **statistical ensemble** of the same size as the raw ensemble

ensemble reordering: merge the univariate statistical ensembles into multivariate spatio-temporal weather trajectories, by using the empirical copula of the original ensemble

Discussion: Ensemble copula coupling (ECC)

the **ECC** ensemble retains the **flow-dependent** multivariate **rank dependence** structure in the raw **ensemble**

some limitations

- the ECC ensemble is constrained to have the same (small) number of members as the raw ensemble
- perfect model assumption with respect to the rank dependence structure, which frequently is in need of postprocesssing, too (poster 85, Martin Leutbecher)
- this need is addressed by Möller et al. (2012) and Schuhen et al. (2012), who apply a Gaussian copula approach to obtain calibrated probabilistic forecasts of multivariate weather quantities, such as wind vectors (poster 52, Isabel Albers)

Discussion: Ensemble copula coupling (ECC)

the **ECC** ensemble retains the **flow-dependent** multivariate **rank dependence** structure in the raw **ensemble**

lots of **opportunities**

- theoretical backing by **Sklar's theorem**
- works with any univariate postprocessing technique, such as EMOS/NGR, BMA or analog methods (talk by Luca delle Monache; poster 19, Georg Mayr; poster 20, Tony Eckel)
- the ECC approach is straightforward to explain, understand, and implement
- free lunch negligible computational effort, as compared to running an NWP ensemble or statistical postprocessing

very broadly applicable to yield physically consistent, calibrated and sharp ensemble forecasts of spatio-temporal weather trajectories

24-h ECMWF EPS 2-m temperature 24–25 Aug 2011

