Water vapor isotope measurements above the Greenland Ice Sheet and importance for interpretation of surface-atmosphere interactions

H. C. Steen-Larsen¹, V. Masson-Delmotte¹, E. Brun², R. Winkler¹, F. Prie¹, A. Landais¹, C. Risi³, B. Stenni⁴

¹ Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS/IPSL Gif-Sur-Yvette
² Meteo-France/CNRM, Toulouse
³ Laboratoire Meteorologie Dynamic, Paris
⁴ Department of Mathematics and Geosciences, University of Trieste
Water vapor isotope measurements above the Greenland Ice Sheet and importance for interpretation of surface-atmosphere interactions

H. C. Steen-Larsen¹, V. Masson-Delmotte¹, E. Brun², R. Winkler¹, F. Prie¹, A. Landais¹, C. Risi³, B. Stenni⁴

- Introduction to stable water isotopes
- The diurnal water vapor cycle above the Greenland Ice Sheet
- Tracing Arctic moisture using isotopes

¹ Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS/IPSL Gif-Sur-Yvette
² Meteo-France/CNRM, Toulouse
³ Laboratoire Meteorologie Dynamic, Paris
⁴ Department of Mathematics and Geosciences, University of Trieste
Isotope hydrology

Isotopologues are molecules with an isotope exchanged in

\[
\delta^{18}O = \frac{\left(\frac{H_2^{18}O}{H_2^{16}O} \right)_{\text{sample}}}{\left(\frac{H_2^{18}O}{H_2^{16}O} \right)_{\text{ocean}}} - 1 \times 1000
\]

\[
\delta D = \frac{\left(\frac{HDO}{H_2O} \right)_{\text{sample}}}{\left(\frac{HDO}{H_2O} \right)_{\text{ocean}}} - 1 \times 1000
\]

Nomenclature:

- **Regular water**
- **Heavy water**
- **Even heavier water**
FRACTIONATION is temperature-dependent
-Larger at low temperature

Water Vapor

- Hot

Liquid Water

- Cold
Setup of the NEEM isotopic surface campaign 2009 - 2012

- Subsurface temperature Measurements 0-150cm With 10 mK resolution
- Air temperatures 1, 3, 7, 10, 13 m above snow surface
- d18O and dD of vapor Continuously from 1, 3, 7, 10, 13 m above snow surface
- Precipitation samples Collected as often as possible
- Surface snow samples every 12 hours
Water vapor isotopes on top of the Greenland Ice Sheet
Water vapor isotopes on top of the Greenland Ice Sheet
Vertical diurnal structure of the atmospheric water vapor close to the surface

Hourly time slices of diurnal cycle

Height above surface [m] vs. Humidity [PPM] with mean value removed

Warming and Cooling

~2h local, ~6h local, ~10h local, ~14h local, ~18h local, ~22h local
The structure of the isotopic profile with height

- Gradient with height in both humidity and isotopes

- Free troposphere and boundary layer interaction

- Snow-Air interaction

- Snow-pack fluxes

- Humidity and isotopes are linked
Still work in progress

Model output (Mass flux and snow surface temperature) from CROCUS

ERA-40 re-analysis → CROCUS Snow pack scheme → Validate against observation

Snow surface isotopes → Interstitial fluxes Snow-air fluxes

Free troposphere isotopes → Boundary layer model → Compare with atmospheric water vapor isotopes

Time [UTC]
Humidity at ~1 meter
Humidity at ~13 meter
SO at ~2 meter
SO at ~13 meter
Temperature at ~1 meter

3000
2000
1000
0
-1000
-2000
-3000
-4000
-5000
-6000
-7000
-8000
-9000
-10000
5
10
15
20
Time (UTC)
Humidity [ppm]
Water vapor isotopes as means of tracking origin of the vapor

Introducing the second order parameter: $d_{\text{excess}} = \delta D - 8 \bullet \delta^{18}O$

Captures kinetic fractionation occurring when a humidity gradient is present because of different molecular diffusivity of the isotopes.
Water vapor isotopes as means of tracking origin of the vapor

Introducing the second order parameter: $d_{excess} = \delta D - 8 \cdot \delta^{18}O$

Captures kinetic fractionation occurring when a humidity gradient is present because of different molecular diffusivity of the isotopes.
Using back trajectories to find the moisture source
Using back trajectories to find the moisture source

Sea Ice

Very dry air

Vapor with high d-excess

Strong evaporation
Comparing the observations with isotope enabled GCM

Bad agreement between observed and modeled d-excess

Good agreement between observed and modeled humidity.

OK agreement between observed and modeled dD isotopic composition
Water vapor isotopic measurements above the Greenland Ice Sheet and importance for interpretation of surface-atmosphere interactions.

H. C. Steen-Larsen1, V. Masson-Delmotte1, E. Brun2, R. Winkler1, F. Prie1, A. Landais1, C. risi3, B. Stenni4

\texttt{hanschr@gfy.ku.dk}

1 Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS/IPSL Gif-Sur-Yvette
2 Meteo-France/CNRM, Toulouse
3 Laboratoire Meteorologie Dynamic, Paris
4 Department of Mathematics and Geosciences, University of Trieste