Lisa Marchand, Ramdane Alkama, <u>Aurélien Ribes</u>, et Bertrand Decharme

AMA 2013

Détection (d'un changement)

Montrer qu'une certaine variation n'est pas cohérente avec la seule variabiilité interne. On peut alors parler de changement.

2004 (Labat et al.)

Reconstruction de débits (ondelettes),

• Tendance à l'augmentation,

2006 (Gedney et al.)

Tendance liée à l'effet antitranspirant du CO₂,

2007 (Piao et al.)

 Tendance liée aux variations climatiques + utilisation des sols,

2009-2010

(Dai et al., Alkama et al.)

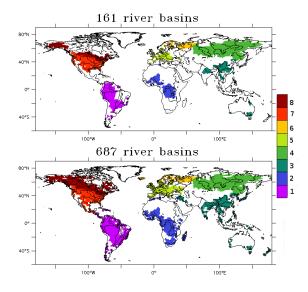
Nouveau jeu de données observées et reconstruites,

- Tendance faible en moyenne globale,
- Tendances plus nettes à l'échelle régionale.

- Faire le point sur la réalité statistique des changements en cours,
- Déterminer à partir de quand ces changements deviennent significatifs dans les projections CMIP5,
- Au passage, évaluer la capacité des modèles CMIP5 à correctement restituer l'hydrologie globale.

Données Dai et al (2009)

- Observations aux exutoires des grands bassins versants,
- Reconstruction physico-statistique des données manquantes à partir des forcages météorologiques.
- Problèmes possibles : homogénéité, anthropisation, qualité des reconstructions, etc.


Données Dai et al (2009)

- Observations aux exutoires des grands bassins versants,
- Reconstruction physico-statistique des données manquantes à partir des forcages météorologiques.
- Problèmes possibles : homogénéité, anthropisation, qualité des reconstructions, etc.

Pré-traitement

- \bullet Observations uniquement : 1958-1992, 161 bv (\sim 50% des débits),
- Observations + reconstructions : 1958-2004, 686 bv.
- Classification en 8 régions (continentales et climatiques).

Domaines d'étude

Méthode statistique

Étude de la tendance :

Univarié :
$$Y_t = m + bt + \varepsilon_t$$
,

Méthode statistique

Étude de la tendance :

Univarié: $Y_t = m + bt + \varepsilon_t$

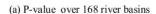
 $Y_{s,t} = m_s + b_s t + \varepsilon_{s,t}$ Multivarié:

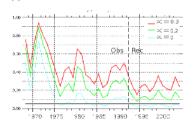
Méthode statistique

Étude de la tendance :

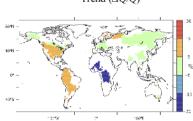
Univarié: $Y_t = m + bt + \varepsilon_t$.

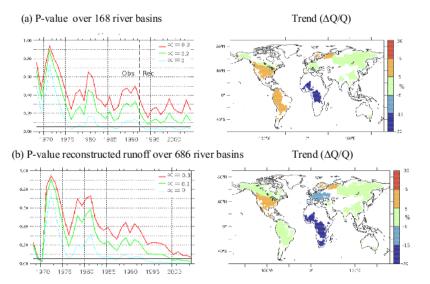
 $Y_{s,t} = m_s + b_s t + \varepsilon_{s,t}$ Multivarié:

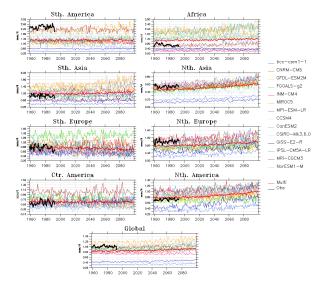

Avantages de la méthode :


- Test multivarié : les tendances peuvent être différentes selon les régions,
- Variabilité interne (ε) :
 - Dépendances spatiales prises en compte,
 - ε_t assimilé à un bruit rouge en temps (processus AR1),

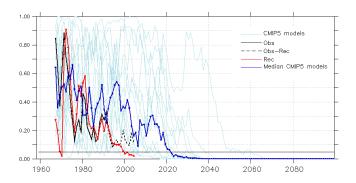
$$\varepsilon_t = \alpha \varepsilon_{t-1} + \widetilde{\varepsilon}_t.$$


 α est estimé à partir de runs de contrôle.


Résultats : détection dans les obs



Trend (ΔQ/Q)



Résultats: modèles CMIP5

Résultats : détection dans les modèles

- Détection entre 2010 et 2035 pour la plupart des modéles,
- Observations reconstruites plutôt en avance.

Conclusions - Perspectives

Conclusions

- Les changements de débits demeurent peu clairs dans les observations,
- Les modèles CMIP5 restituent relativement raisonnablement les grandes caractéristiques de l'hydrologie globale,
- Les changements deviennent significatifs dans les modèles entre 2010 et 2035.

Conclusions

Mieux comprendre les incertitudes sur les données (observations et plus particulièrement, reconstructions).