Reconstruction du manteau neigeux dans le passé sur l'Eurasie

E. Brun, Y. Peings, V. Vionnet, A. Boone,
B. Decharme, H. Douville

CNRM-GAME, Toulouse, France
F. Karbou, S. Morin

CNRM-GAME, CEN, Grenoble, France

AMA, Toulouse Janvier 2013

Points traités

- Reconstruction du manteau neigeux passé : un défi important impossible à relever avec les seules observations
- Modèles numériques du manteau neigeux :
 ⇒ estimation des caractéristiques internes à partir des seules conditions météorologiques
 (sans utilisation des observations relatives à la neige)
- Simulation du manteau neigeux en Eurasie avec le modèle Crocus forcé par ERA-interim
- Evaluation de l'enneigement dans la réanalyse 20CR sur l'Eurasie

Importance de connaître de l'enneigement historique :

- Ressource en eau majeure dans de nombreuses régions
- Importante source de rétroaction climatique (albédo, ...)
- Indicateur du changement climatique (forte sensibilité)
- Critique pour le gel du sol (fort isolant)
-

Connaissance limitée de l'enneigement passé

Observations in-situ

- Peu de longues séries de hauteur de neige au sol atteignant le présent
- La plupart des longues séries ont des données manquantes
- Nombreuses erreurs et ambiguïtés dans les messages SYNOP passés
- Mesures des caractéristiques internes du manteau neigeux très rares (hors contexte avalanches)
- Pas de couverture globale homogène

Introduction

Connaissance limitée de l'enneigement passé

Observations in-situ

- Peu de longues séries de hauteur de neige au sol atteignant le présent
- La plupart des longues séries ont des données manquantes
- Nombreuses erreurs et ambiguïtés dans les messages SYNOP passés
- Mesures des caractéristiques internes du manteau neigeux très rares (hors contexte avalanches)
- Pas de couverture globale homogène

Télédétection du manteau neigeux (depuis 1972)

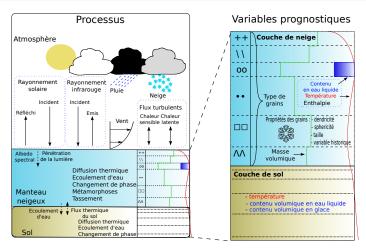
- Encore de nombreuses limitations :
 - pas d'épaisseur, seulement étendue et équivalent en eau (SWE)
 - pas d'étendue en cas de nébulosité, pas de SWE pendant la fonte

Introduction

Connaissance limitée de l'enneigement passé

Observations in-situ

- Peu de longues séries de hauteur de neige au sol atteignant le présent
- La plupart des longues séries ont des données manguantes
- Nombreuses erreurs et ambiguïtés dans les messages SYNOP passés
- Mesures des caractéristiques internes du manteau neigeux très rares (hors contexte avalanches)
- Pas de couverture globale homogène

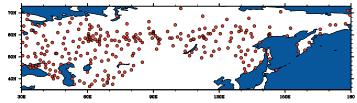

Télédétection du manteau neigeux (depuis 1972)

- Encore de nombreuses limitations :
 - pas d'épaisseur, seulement étendue et équivalent en eau (SWE)
 - pas d'étendue en cas de nébulosité, pas de SWE pendant la fonte
- ⇒ Les réanalyses de neige souffrent d'inhomogénéités spatio-temporelles
- ⇒ Les modèles de neige forcés par des réanalyses météo peuvent-ils compenser cela?

- Introduction
- Modèles de neige
- 3 ERA-interim / Crocus
- Evaluation de l'enneigement dans la réanalyse 20CR
- Conclusion
- 6 Add-ons

Crocus : modèle de neige détaillé couplé à ISBA-DF

Introduction



(Brun et al., 1992; Vionnet et al., 2012)

- Forçage par les seules conditions météorologiques
- Les observations de neige ne servent qu'à l'évaluation

Données historiques pour l'évaluation des simulations

- Historical Soviet Daily Snow Depth (HSDSD):
 - épaisseur de neige quotidienne (hors forêt) / toute l'année
 - 263 stations : > 1 100 000 observations contrôlées (1979-1993)
 - quelques séries commencent en 1891
 - accès facile à partir du portail NSIDC

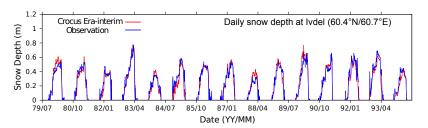
- + nombreuses obs. co-localisées de SWE (3/mois)
- + nombreuses obs. co-localisées de température du sol mensuelle

- Introduction
- 2 Modèles de neige
- 3 ERA-interim / Crocus
- Evaluation de l'enneigement dans la réanalyse 20CR
- Conclusion
- 6 Add-ons

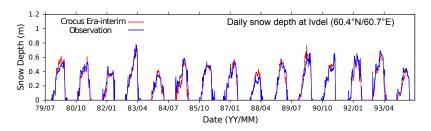
Configuration des simulations

Réanalyse ERA-interim **ECMWF**

- système d'assimilation 4D-Var
- précipitation du modèle (pas d'analyses)
- rayonnement du modèle (pas d'analyses) ==>forçages tri-horaires


(Dee et al., 2011)

Neige: Crocus Sol: ISBA-DF


- simulations sur chaque site d'observation
- simulations 2D sur l'Eurasie
- sublimation par blizzard
- sorties : épaisseur de neige, SWE, densité, profils internes sol et manteau neigeux

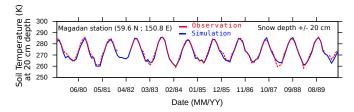
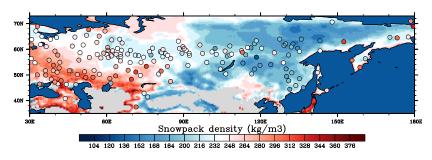

Evaluation par rapport aux observations in-situ

Illustration de la performance Era-interim / Crocus


Illustration de la performance Era-interim / Crocus

10 années de simulation de la température mensuelle du sol (20 cm)

Evaluation de la densité simulée

Comparaison entre densité observée (cercles) et simulée (2D) le 10 Mars (moyenne 1979-1992)

(Brun et al., in press)

Les simulations calculent des variables qui ne peuvent pas etre analysées directement

Comparaison avec les données de SWE Globsnow

Globsnow est un produit satellitaire qui assimile les observations in-situ d'épaisseur

SWE	GlobSnow	ERA-i / Crocus		
(Snow Water Equivalent)				
Biais ($kg m^{-2}$)	- 4.8	0.9		
$RMSe(kg m^{-2})$	44.9	44.6		
nombre d'obervations	137379	109189		

Performance de Globsnow / Luojus et al. (2011). Le domaine et la période diffèrent un peu

Comparaison avec les données de SWE Globsnow

Globsnow est un produit satellitaire qui assimile les observations in-situ d'épaisseur

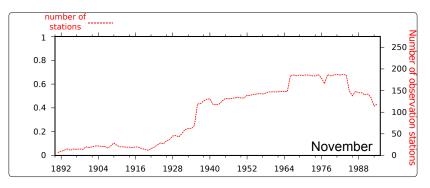
SWE	GlobSnow	ERA-i / Crocus
(Snow Water Equivalent)		
Biais (kg m ⁻²)	- 4.8	0.9
$RMSe(kg m^{-2})$	44.9	44.6
nombre d'obervations	137379	109189

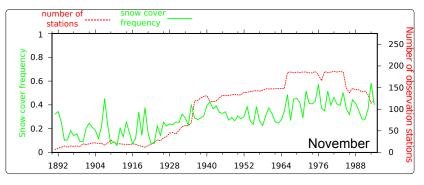
Performance de Globsnow / Luojus et al. (2011). Le domaine et la période diffèrent un peu

Les simulations du manteau neigeux forcées par ERA-interim ont de très bonnes performances mais ...

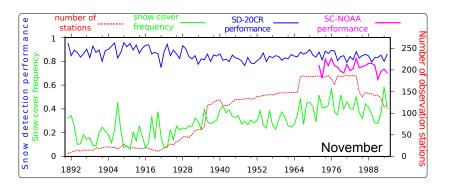
- ERA-interim commence seulement en 1979
- La performance de ERA-interim n'est pas homogène (de plus en plus d'observations en période récente)
- ⇒ Homogénéité limitée des simulations au cours du temps

- Introduction
- 2 Modèles de neige
- 3 ERA-interim / Crocus
- Evaluation de l'enneigement dans la réanalyse 20CR
- Conclusion
- 6 Add-ons

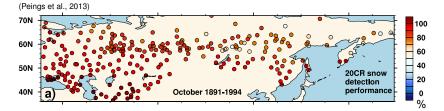

Evaluation de l'enneigement dans la réanalyse 20CR

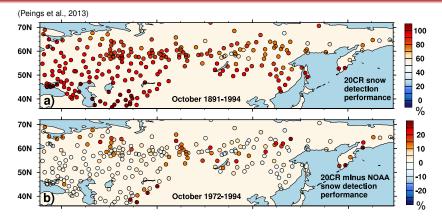

Objectif final : forçage de Crocus par les réanalyses 20CR (étude en cours)

- 20CR n'assimile que les pressions au sol (+ SST imposées)!!!
- 20CR vise une homogénéité maximale au cours du temps depuis 1871
- Toutes les variables de forçage pour un modèle de neige sont produites
- 20CR utilise un modèle de neige de complexité intermédiaire (modèle de surface Noah)
- 20CR n'assimile aucune observation d'enneigement (≠ ERA-interim)


⇒ Evaluation détaillée de l'enneigement dans 20CR comme première étape

Création d'un indice de performance : taux d'observations quotidiennes in-situ d'épaisseur de neige en accord avec l'enneigement de 20CR






Performance homogène de 20CR en octobre et novembre

Performance homogène de 20CR en octobre et novembre

Performance homogène de 20CR en octobre et novembre

Conclusions

ERA-interim pour forcer des modèles de neige

- une source de données d'excellente qualité dans les régions étudiées
- ⇒ simulations réalistes et non biaisées d'épaisseur, SWE et densité
- ⇒ simulations réalistes et non biaisées des périodes d'enneigement
- ⇒ bien meilleurs résultats qu'avec le forçage de l'Université de Princeton

Conclusion

Add-ons

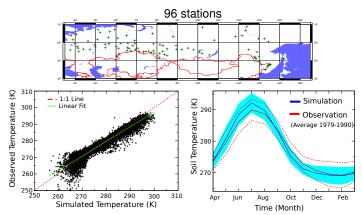
Conclusions

ERA-interim pour forcer des modèles de neige

- une source de données d'excellente qualité dans les régions étudiées
- ⇒ simulations réalistes et non biaisées d'épaisseur, SWE et densité
- ⇒ simulations réalistes et non biaisées des périodes d'enneigement
- ⇒ bien meilleurs résultats qu'avec le forçage de l'Université de Princeton

Performance impressionnante de l'enneigement 20CR en automne

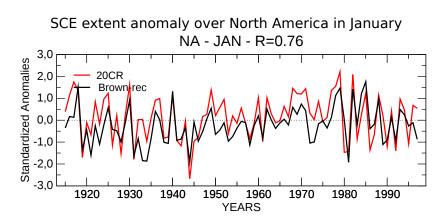
- performance stable et homogène depuis 1891 sur l'Eurasie
- moins bon que ERA-i/Crocus mais meilleur que les produits satellite!


Quelques défauts :

- surestimation des chutes de neige en milieu d'hiver
- surestimation de l'humidité de l'air en présence de neige
- température de l'air trop froide en période de fonte

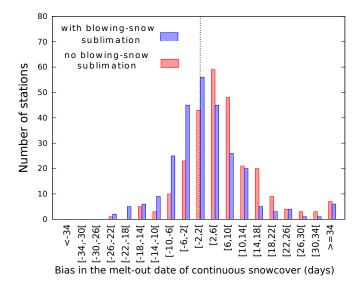
Merci pour votre attention!

Projet financé par ANR CLASSIQUE et EU COMBINE


Evaluation of soil temperature (at 20 cm depth)

Comparison between observed and simulated soil monthly soil temperature (1979 to 1990) ERA-Interim meteorological forcing / blowing snow sublimation

Year-round : 11760 monthly obs. \Rightarrow Bias = 0.1 K / RMSe = 2.5 K Winter (DJF) : 2900 monthly obs. \Rightarrow Bias = -0.5 K / RMSe = 2.8 K


20CR snow cover extent over North America versus Brown reconstruction

Overall performance

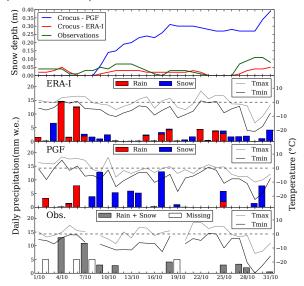
Forcing data set		ERA-I	PGF	ERA-I	PGF	ERA-I	ERA-I
GPCC precipitation scaling		no	no	yes	yes	no	yes
Blowing snow sublimation		no	no	no	no	yes	yes
Variable	Statistics						
Snow depth	Mean	0.150	0.168	0.120	0.165	0.118	0.093
(m)	Bias	0.039	0.056	0.008	0.053	0.006	-0.019
	Corr.	0.887	0.844	0.889	0.862	0.884	0.865
	RMSe	0.117	0.151	0.096	0.143	0.097	0.103
Annual snow	Mean	152.0	156.2	145.3	155.6	144.2	134.9
duration	Bias	6.6	10.8	-0.1	10.2	-1.2	-10.5
(days)	Corr.	0.952	0.946	0.958	0.948	0.950	0.939
	RMSe	21.3	24.0	19.0	23.4	20.8	25.3
Onset of continuous	Mean	134.7	130.2	136.7	130.6	138.4	142.4
snow cover	Bias	-5.1	-10.1	-2.9	-9.8	-1.2	3.0
(days since 1st July)	Corr.	0.893	0.849	0.896	0.854	0.878	0.840
	RMSe	17.1	21.8	16.3	21.5	17.9	21.2
End of continuous	Mean	284.9	284.7	280.7	284.3	280.1	274.9
snow cover	Bias	7.2	7.4	2.6	7.1	2.0	-3.6
(days since 1st July)	Corr.	0.873	0.860	0.879	0.863	0.875	0.858
	RMSe	19.1	20.1	17.2	19.8	17.5	18.7
Snow water	Mean	88.1	87.8	70.2	86.3	68.9	53.1
equivalent	Bias	20.1	19.8	2.3	18.3	1.0	-14.8
$(kg m^{-2})$	Corr.	0.712	0.633	0.736	0.678	0.710	0.712
, - ,	RMSe	49.1	56.0	40.5	52.0	41.6	42.8
Density	Mean	215.5	195.5	212.6	195.5	211.4	205.7
(kg m ⁻³)	Bias	-6.6	-26.7	-9.7	-26.7	-10.3	-15.4
/	Corr.	0.669	0.623	0.665	0.626	0.662	0.652
	RMSe	46.2	55.0	47.3	55.0	48.0	50.1

Melt-out date distribution

Evaluation of soil temperature (at 20 cm depth)

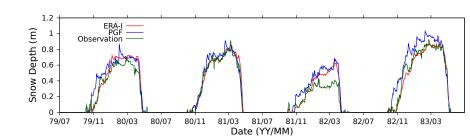
soil temperature ←⇒ snowpack depth and density

$$\lambda \sim \propto \rho^2, z \propto \frac{1}{\rho}$$

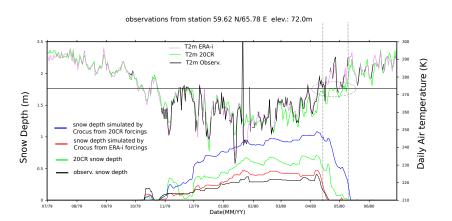

 \Longrightarrow for a given density : $\Re_{\it th} \sim \propto \it z$

$$\Longrightarrow$$
 for a given SWE : $\Re_{th} \sim \propto rac{1}{
ho^3}$

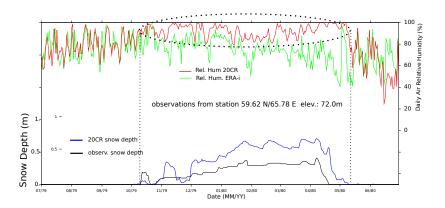
 λ is snow thermal conductivity, ρ is snow density, z is snow depth, \Re_{th} is snowpack thermal resistance

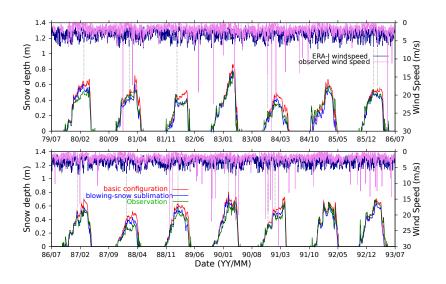

PGF temperature/soil inconsistency (ex. Pirovskoe)

Pirovskoe (57.6 N / 93.3 E)



PGF temperature/soil inconsistency (ex. Pirovskoe)


Pirovskoe (57.6 N / 93.3 E)


Air temperature in 20CR

Air temperature in 20CR

Air temperature in 20CR

