

Influence of volcanic eruptions

on the bi-decadal variability in

the North Atlantic

Didier Swingedouw, Juliette Mignot, Eric Guilyardi, Pablo Ortega, Myriam Khodri

Background

- AMOC: a key player for decadal prediction
- Volcanic impact on AMOC (Ottera et al. 2011, Iwi et al. 2010, Mignot et al. 2011...)
- Bi-decadal variability in the North Atlantic:
 - in several models (Frankcombe et al. 2010...)
 - and in data (Chylek et al. 2011, Sicre et al. 2008, Divine et al. 2006...)

t2m skill without trends: years 2-5

Van Oldenborgh et al. 2012

Zanchettin et al. 2012

AMOC Initialisation

- IPSLCM5A-LR simulations nudged or free (with observed external forcings)
- Two reconstructions of the AMOC
- Agreement between nudged and reconstructions
- Synchronisation also in the historical simulations

Swingedouw et al., Clim. Dyn. 2013

20-yr cycle in IPSL-CM5A-LR

20-yr cycle in IPSL-CM5A-LR

Impact of volcanic forcing

Impact of volcanic forcing

Impact of volcanic forcing

Experimental design

- IPSL-CM5A-LR climate model
- 5-member historical ensemble (natural and anthropogenic forcing)
- 5-member initialised ensemble nudged with SST anomalies
- 5-member sensitivity ensemble without Pinatubo
- CMIP5 ensemble
- Comparison with existing in situ SSS data
- A paleo-climate perspective

AMOC response in the IPSL-CM5A-LR model

- The sensitivity ensemble without Pinatubo shows a larger decrease in the early 2000's as compared to historical ensemble
- Then a partial recovery in the late 2010's

Mechanisms

- Pinatubo decreases SST and increases sea-ice cover in the GIN Seas
- This interferes with variability of the EGC
- This removes the salinity anomalies in the Labrador Sea
- And then the convection and the AMOC variations

A conceptual model to explain AMOC variability in the model

We propose a conceptual model based on:

- harmonic response to volcanoes
- Linear response to radiative forcing (GHG)

$$f(t) = \mathop{a}\limits_{i=1}^{3} a_{i}H(t - t_{i})\sin(\frac{2\rho}{20}t)e^{-\frac{t - t_{i}}{D}} - b \, \hat{F}(t)$$

Comparison with IPSL-CM5-LR

Role of observed NAO in the initialised ensemble

We add a term corresponding to observe NAO to explain AMOC variation in the initialised simulation

$$f(t) = \mathop{a}\limits^{3}_{i=1} a_{i}H(t - t_{i})\sin(\frac{2\rho}{20}t)e^{-\frac{t - t_{i}}{D}} - b \stackrel{\cdot}{} RF(t)$$
$$+ c \stackrel{\cdot}{} NAO(t + T)$$

A CMIP5 multi-model confirmation?

- 11 individual models (not different versions) from CMIP5 WITHOUT IPSLCM5A
- The ensemble mean shows a maximum in AMOC just before 1980 as in IPSLCM5A
- Large spread
- 5 models show a maximum of energy in the 12-30 yrs spectral band. Strong similarity of the response in these 5 models

Comparison with in situ SSS in the subpolar gyre

- Reverdin et al. (2010) reconstruction of SSS variability over the east subpolar gyre
- Too strong variance in the model (2 times)
- Agreement between historical and data from 1970 to 1994 (20-yr sliding window correlation, p<0.1)

A paleo-perspective

- Last millennium simulation from IPSLCM5A-LR (Khodri et al. in prep.)
- We select all the volcanoes from preindustrial era that are larger than Agung but not too large
- 6-member ensemble
- EOF1 of Compilation of 6 ice cores reconstructing Greenland O¹⁸ over the last millennium (Ortega et al. in prep.)

A paleo-perspective

Conclusions

- Volcanic eruption precedes an AMOC maximum by around 10-15 years
- Effect of Pinatubo: **destructive interference**!
- NAO still explains large amount of variance as compared to this mechanism of 20-yr cycle excitation by volcanoes
- Impact of volcanoes also very clear in a 5-member CMIP5 ensemble
- Consistent with in situ SSS in the subpolar gyre
- And data of Greenland over the last millennium
- ⇒ large body of evidences confirming potential reality of these processes in response to volcanic eruptions

Thank you

Didier.Swingedouw@lsce.ipsl.fr

Courtesy of Bruno Ferron, OVIDE 2010

Link between PC1 over Greenland and the AMO

HadISST regressed over Greenland PC1 (1870-1974)

100°W

80°S

0°

XXXX

100°E

-0.04

-0.05

A paleoperspective

In the model, the AMOC indeed leads by 7 years the PC2 of Greenland t2m for the whole simulation

A multi-model confirmation?

- 11 individual models (not different versions) from CMIP5 WITHOUT IPSLCM5A-LR
- The ensemble mean shows a maximum in AMOC just before 1980 as in IPSLCM5A-LR
- Large spread
- 5 models show a maximum of energy in the 12-30 yrs spectral band. Strong similarity of the response in these five models

A paleo-perspective

In situ Labrador Sea variation

- The 1985 GSA is clearly different from 1972 and 1993 in the sense that there is a subsurface positive anomaly
- Belkin et al. (1998): two modes of GSA, one remote (Artic) and one more local (1980s)

Central Labrador Sea from 1949 to 2005 (updated from Yashayaev et al., 2003) Source IPCC 2007

Comparison of the AMOC forcings

- NAO forcing is larger than that from volcanoes
- Over the period 1973-2018:
 - Std volcanoes =0.54 Sv
 - Std NAO = 0.93 Sv

Slow down of the subpolar gyre

- The 20-yr cycle in the model is dependant on the subpolar gyre strength (anomalies propagation)
- The subpolar gyre is slowing down in the model (10% in 40 years)
- To improve the model we can take into account this slowing down

Accounting for the slow down of the subpolar gyre

To improve the model we take into account the slowing down of the subpolar gyre (10% in 40 years)

$$f(t) = \mathop{a}\limits_{i=1}^{3} a_{i} H(t - t_{i}) \sin(\frac{2\rho}{22}t) e^{-\frac{t - t_{i}}{D}} - b \, \mathcal{F}(t)$$

Accounting for the slow down of the subpolar gyre

To improve the model we take into account the slowing down of the subpolar gyre (20% in 20 years from 1990 to 2010)

$$f(t) = \mathop{a}\limits_{i=1}^{3} a_{i} H(t - t_{i}) \sin(\frac{2\rho(1 - 0.01t)}{20}t) e^{-\frac{t - t_{i}}{D}} - b \, \mathcal{F}(t)$$

Convection sites response

Pinatubo direct impact

Is volcanic impact on the NAO so clear in data?

