

Decadal predictions for Europe: Regional downscaling of the MiKlip decadal experiments

Hendrik Feldmann (KIT) – with Marianne Uhlig, Sebastian Mieruch, Christoph Kottmeier (KIT), Claus-Jürgen Lenz, Barbara Früh (DWD), Kevin Sieck (MPI-M), Steffen Kothe (GUF) and other MiKlip participants

Outline

- The MiKlip Decadal Prediction System
- The Regionalization Module of MiKlip
- Results: Regional Decadal Predictions for Europe
 - Compared to the global simulations
 - Dependency on season, region and time
 - Potential added value
- Conclusions

The MiKlip Decadal Prediction System

- Model system
 - MPI-ESM global model (ECHAM6, MPIOM, JSBACH)
 - LR: T63 (~1.87°) 47 layers, ocean 1.5°
 - MR: T63, 95 layers, 0.4° tri-polar ocean
 - Initialized 10-year simulations starting 1960 2012
 - MPI-ESM-LR (Baseline0 = CMIP5 simulations)
 - decadal2000 means simulation period 2001 2010 (cf. CMIP5)
 - **10 members every 5 years** (1960, 1965,..., after 2000)
 - **3 members in-between years** (1961, 1962, 1963, 1964, 1966,..)
- 3 development stages by improving
 - Initialization, ensemble generation and model parameterizations
 - Development stage 1 (Baseline) has been finished recently
- Regional downscaling module
 - Developing a regional decadal prediction ensemble
 - Using COSMO-CLM and partly with REMO and WRF

Regional Decadal Predictions

Concept:

- What is predictable on regional scales (over land)?
 - Main interest of end users
- Can regional downscaling contribute an added value?
 - by increasing the resolution in source regions of potentially predictability and feedback to the global model
 - by downscaling in selected target regions

At this stage:

- First assessment of the skill of the MiKlip baseline decadal predictions for Europe (from regional and global simulations)
- Relation regional to global ensemble properties
- Gain some ideas about a potential added value
- Test of suitable metrics for the verification and analysis methods

Focus Regions of the MiKlip Regionalization

MPI-ESM-LR Ensemble – MiKlip Baseline0 (CMIP5) Surface Temperature North-Atlantic Sector RMSE Skill Scores for year 2-5 – summer means

- Skill score based on RMSE: 1- (RMSE_fc / RMSE_ref)
- Observations based on HADISST and GHCN-CAMS
- Ensemble mean
- Skill over EU linked with skill in the North Atlantic

Müller et al. 2012, GRL (and Poster here)

North Atlantic Surface Temperature SST [40W-15W, 50N-60N] - RMSE Skill 4yr means

S2D 2013 – Feldmann - Regional decadal prediction for Europe

7

Regional Downscaling for Europe

Regional Baseline Ensemble for Europe

with CCLM and REMO simulations performed by DECREG, LACEPS, REDCLIP and Regio_Predict

- CORDEX/ENSEMBLES domain, 0.22° resolution
- Downscaling of MPI-ESM-LR decadal simulations (Baseline0)
- Hindcasts all 10 realizations for 5 decades 1960, 1970, 1980, 1990, 2000
- Evaluations and reference simulations based on ERA40/ERAInterim and MPI-ESM-LR historical
- 2 Models (CCLM and REMO)
- Decadal simulations initialized using long-term ERA simulation

Simulation Plan

	Experiment		R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	
Reference Simulations Decadal Hindcasts	decadal2000	CCLM											
		REMO											
	decadal1990	CCLM											
		REMO											
	decadal1980	CCLM											
		REMO											
	decadal1970	CCLM											
		REMO											\ //IT
	decadal1960	CCLM											
		REMO											Karlsruher Institut für Technologie
	ERA driven 1960-2010	CCLM											GOETHE
		REMO											UNIVERSITÄT Frankfurt am main
	Uninitialized 1960-2010	CCLM		CCLM REMO								DWD	
		REMO										De	eutscher Wetterdienst
			-										Max-Planck-Instit für Meteorologie

Skill of (regional) decadal predictions

- Skill CCLM and MPI-ESM-LR ensemble vs. E-Obs gridded observations
- MPI-ESM interpolated to E-Obs grid and height corrected (temperature)
- Anomalies of 2m-temperature and precipitation (until now)
- Hindcast period 1960 2010
- Skill scores with climatology as reference
- Here year 1-10 but also applied to 1st/2nd pentade

- Metrics for ensemble forecast verification in accordance with VECAP here
 - Mean Square Skill Score (MSSS) (Murphy et al., 1988; Goddard et al., 2012)
 - Accuracy is the forecast close to the observation?
 - Categorical skill scores (CAWCR) warmer/colder than climatology
 - Here: Odds ration skill score (ORSS)
 - What was the improvement of the forecast over random chance?

Ensemble Spread GCM and RCM Ensemble T_{2m} CCLM and MPI-ESM-LR – decadal2000 (2001-2010)

Ensemble Spread GCM and RCM Ensemble T_2m CCLM and MPI-ESM-LR – decadal2000 (2001-2010)

Summer

Winter

ensemble spread of 2-m-temperature for the PRUDENCE regions

Mean Square Skill Score MSSS - Temperature 1960 – 2010

CCLM and MPI-ESM-LR MiKlip Baseline Ensemble

Mean Square Skill Score MSSS Temperature 1960 – 2010

CCLM Baseline Ensemble vs E-Obs annual values

EA

source: DM

Mean Square Skill Score MSSS Temperature 1960 – 2010 CCLM and MPI-ESM-LR MiKlip Baseline Ensemble vs E-Obs annual values

Odds Ratio Skill Score (ORSS) CCLM Baseline Ensemble - T_{2m} 1960 – 2010 CCLM Baseline Ensemble vs. E-Obs, annual values year 1-10 Answers the question: What was the improvement of the forecast over random chance?

Conclusions

- There seems to be some decadal predictability for Europe in the MiKlip Baseline ensemble
 - Main source seems to be the climate trend (for temperature)
- There seems to be some added value in regional downscaling
- The skill varies with season, region and decade
 - With higher skill in southern and western Europe
 - Higher for year, spring and summer and lower in winter
 - Skill in last decade (decadal2000) seem to be higher than in earlier phases (e,g. decadal1980)
- Outlook:
 - Proper analysis of relevant temporal and spatial scales is currently analysed
 - Identification of valuable predictions beyond mean temperature and precipitation anomalies
 - Improvement of the global and regional prediction system in the next development stages
 - w.r.t initialisation, ensemble generation, coupling and model performance

Thank you for your attention

