Regional forecast quality of CMIP5 multi-model decadal climate predictions

F. J. Doblas-Reyes
ICREA & IC3, Barcelona, Spain

Prediction on climate time scales

Progression from initial-value problems with weather forecasting at one end and multi-decadal to century projections as a forced boundary condition problem at the other, with climate prediction (sub-seasonal, seasonal and decadal) in the middle. Prediction involves initialization and systematic comparison with a simultaneous reference.

Meehl et al. (2009)
CMIP5 near-term experiments

CMIP5 core (inner circle) and tier 1 (outer circle) experiments. For the core experiments, the atmospheric composition should be prescribed as in the historical run and then follow the RCP4.5.

Main question: Does the initialization improve forecast quality?

Taylor et al. (2012)
Drift and systematic error

Global mean near-surface air temperature over the ocean (one-year running mean applied) from the CMIP5 hindcasts. Each system is shown with a different colour. NCEP and ERA40/Int used as reference. The systematic error is very different from one system to another.
CMIP5 decadal predictions

Predictions (2-5 forecast years) from the CMIP5 multi-model (6 systems, initialized solid, historical and RCP4.5 dashed) over 1960-2005 for global-mean temperature and the Atlantic multi-decadal variability. GISS and ERSST data used as reference.

Correlation of the ensemble-mean prediction as a function of forecast time. Grey area for the 95% confidence level.

Root mean square error, where dots represent the forecast times for which Init and NoInit are significantly different at 95% confidence level.

Doblas-Reyes et al. (2013)
CMIP5 decadal predictions

Predictions (2-5 forecast years) for subsets of the CMIP5 multi-model (Init solid, NoInit dashed) for global-mean temperature and the Atlantic multi-decadal variability. GISS and ERSST data used as reference.
CMIP5 versus other predictions

(Top) Correlation of the ensemble-mean as a function of forecast time for predictions from DePreSys_PP, ENSEMBLES and CMIP5 multi-models over 1960-2005 (five-year start dates) for global-mean temperature, Atlantic multi-decadal variability and Interdecadal Pacific Oscillation. Grey area for the 95% confidence level. (Bottom) Time series for the 2-5 year forecast time. Decadal predictions from GISS and ERSST data used as reference.
One-year start date temperature

Init correlation of ensemble mean (six systems; ref ERSST, GHCN and GISS)

Init minus NoInit correlation difference

Init RMSSS of ensemble mean

Ratio RMSE Init/NoInit

Doblas-Reyes et al. (2013)
Trends

Ratio between the slope of the linear trend and the residual variability (units year$^{-1}$) over 1961–2010 for (left) near-surface temperature and (right) GPCC precipitation.

Temperatures from GHCN/CAMS, ERSST and GISTEMP1200 is used as a reference. Monthly values smoothed with a 4-year running average.

Trends from Doblas-Reyes et al. (2013)
Five-year start date temperature

Init correlation of ensemble mean (12 systems; ref ERSST, GHCN and GISS)

Init minus NoInit correlation difference

Init RMSSS of ensemble mean

Ratio RMSE Init/NoInit
Five-year start date temperature

System a

Init RMSSS of ensemble mean

Ratio RMSE Init/NoInit

System b
Sensitivity of skill to trend strength

Correlation of the ensemble-mean for near-surface air temperature of the DePreSys_PP (left) Assim, (centre) NoAssim and (right) their difference as a function of the integration along the forecast time (horizontal axis) and the space (vertical axis).

Each line corresponds to a version of DePreSys_PP, ranked in decreasing order as a function of the slope of the linear trend of the NoAssim GMST.

Hindcasts over 1960-2005 have been used and the reference dataset is NCEP R1. Black lines represent the confidence interval.

Volpi et al. (2013)
North Pacific prediction

(Left) Correlation of the CMIP5 multi-model SST ensemble mean for the 2-5 forecast years. (Right) Time series of averaged SSTs over the black box, with references in black and each start date in a different colour. Ten start dates used over 1960-2005. ERSST data used for reference.

Note the missed events in 1963 and 1968.

Guemas et al. (2012)
Hurricane frequency prediction

Average number of hurricanes per year estimated from observations and from the CMIP5 multi-model decadal prediction ensemble (forecast years 1-5). The correlation of the ensemble mean for the initialized, uninitialized and statistical predictions are shown with the 95% confidence intervals.

Caron et al. (2013)
CMIP5 spread

Ratio spread/RMSE for temperature from the multi-model CMIP5 decadal initialised (left) and uninitialised (right) predictions (1960-2005) for 2-5 forecast year. One-year start date interval.

The multi-model ensemble spread is not an adequate measure of forecast uncertainty.

Doblas-Reyes et al. (2013)
Five-year start date precipitation

Init correlation of ensemble mean (12 systems; ref GPCC)

Init minus NoInit correlation difference

Init RMSSS of ensemble mean

Ratio RMSE Init/NoInit
Climate services: renewable energy

Decadal predictions of downward surface solar radiation near-surface temperature from EC-Earth for the Nov 2011 start date, first five years of the forecast, with the climatology computed from 1979-2010 (reference ERA-Interim):

- Large areas with 50-100% probability to be above normal
- Consistent signal across Mediterranean
- Mostly positive correlation (largely non statistically significant)
Some suggestions for CMIP6

- Formulate an appropriate and relevant question.
- Decadal prediction will benefit from being part of CMIP6:
 - Better understanding (to, hopefully, reduce the drift) the systematic error.
 - Control runs for predictability estimates.
- Climate-projections could benefit from decadal prediction being part of CMIP6:
 - Reduction of the drift and better understanding of drift sources.
 - Continuous verification of the models.
- Suggest a transpose-CMIP.
- Decadal prediction might be a very expensive part of CMIP.
- Real-time decadal prediction exchange should continue and be enhanced wherever possible.
CMIP5 decadal forecasts

- There is skill in surface temperature with a horizon of several years. Initializing improves skill in various regions.

- Initialization improves GMST and AMV predictions up to 10 years. Causes might be a) phasing of internal variability and b) correction of model forced response.

- There is less skill in precipitation.

- Multi-model spread of limited use as uncertainty measure.

- The CMIP5 decadal experiment offers a huge potential for the analysis of decadal predictability and prediction (beyond forecast quality assessment).

- The impact of many processes still open: sea ice, volcanic and anthropogenic aerosols, vegetation and land use, ...