## Results from the CFSv2 CMIP5 Decadal Forecasts

Edwin K. Schneider

George Mason University and COLA

International Workshop on Seasonal to Decadal Prediction, Toulouse, May 2013.

# **Basic Experiment: CMIP5 Decadal Forecasts**

- Compare forecasts made with different ocean initial conditions (full initialization).
  - CFSR 1980- ("NCEP simulations") assimilation in its native ocean model.
  - NEMOVAR 1960- ("COLA simulations") interpolated to foreign ocean model grid.

## Evaluation of the CFSv2 CMIP5 Decadal Predictions

Edwin K. Schneider, Arun Kumar, Zeng-Zhen Hu, Jian Lu, Larry Marx, Shrinivas Moorthi, Patrick Tripp, Xingren Wu, Bohua Huang, Jieshun Zhu, V. Krishnamurthy, Lakhshmi Krishnamurthy, Ioana Colfescu, Hua Chen, and James L. Kinter III

## **CMIP5 Model Description**

| CMIP5 Near-Term Players                                                                                                                                                               | CMIP5                |          | OGCM             | Initialization          |                                                                            |                                                                                                             |                                  | Perturbation                          |                                      | Aerosol                                  |                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|------------------|-------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------|--------------------------------------|------------------------------------------|-----------------------------------|
| name of modeling center (or group)                                                                                                                                                    | official<br>model_id | AGCM     |                  | Atmosphere/Land         | Ocean                                                                      | sea ice                                                                                                     | anomaly<br>assimilati<br>on?     | Atmos                                 | Ocean                                | Concentr<br>ation(C)<br>/Emission<br>(E) | Direct(D)/<br>Indirect(I1<br>,I2) |
| Beijing Climate Center, China<br>Meteorological Administration<br>(BCC) China                                                                                                         | BCC-CSM<br>1.1       | 2.8°L26  | 1°L40            | no                      | SST, T&S (SODA)                                                            | No                                                                                                          | no                               | perturbed atı                         | mos/ocean                            | С                                        | D                                 |
| Canadian Centre for Climate Modelling<br>and Analysis<br>(CCCMA) Canada                                                                                                               | CanCM4               | 2.8°L35  | 1.4°x0.9°<br>L40 | ERA40/Interim           | SST<br>(ERSST&OISST),<br>T&S (SODA &<br>GODAS)                             | HadISST1.1                                                                                                  | no                               | ensemble assimilation                 |                                      | E                                        | D, I1                             |
| Centro Euro-Mediterraneo per I<br>Cambiamenti Climatici<br>(CMCC-CM) Italy                                                                                                            | CMCC-CM              | 0.75°L31 | 0.5-2°<br>L31    | no                      | SST, T&S (INGV ocean analysis)                                             | CMCC-CM<br>climatology                                                                                      | no                               | ensemble assimilation                 |                                      | С                                        | D, I1                             |
| Centre National de Recherches<br>Metéorologiques, andCentre Européen<br>de Recherche et Formation Avancées<br>en Calcul Scientifique<br>(CNRM-CERFACS) France                         | CNRM-CM5             | 1.4°L31  | 1ºL42            | no                      | T&S (NEMOVAR-<br>COMBINE)                                                  | No                                                                                                          | no                               | 1st day<br>atmospheric<br>conditions  | no                                   | С                                        | D, I1                             |
| National Centers for Environmental Prediction and Center for Ocean-Land-Atmosphere Studies (NCEP and COLA) USA                                                                        | CFSv2-2011           | 0.9°L64  | 0.25-0.5°<br>L40 | NCEP CFSR<br>reanalysis | NCEP CFSR ocean analysis (NCEP runs) NEMOVAR-S4 ocean analysis (COLA runs) | NCEP CFSR<br>reanalysis                                                                                     | no                               | no                                    | no                                   | С                                        | D, I1                             |
| EC-EARTH consortium (EC-EARTH) Europe                                                                                                                                                 | EC-EARTH             | 1.1°L62  | 1°L42            | ERA40/Interim           | Ocean assimilation<br>(ORAS4/NEMOVAR<br>S4)                                | NEMO3.2-LIM2<br>simulation forced<br>with DFS4.3<br>atmospheric fields<br>through the CORE<br>bulk formulae | no (KNMI<br>& IC3) yes<br>(SMHI) | start dates and singular vectors      | Ensemble<br>ocean assim<br>(NEMOVAR) | С                                        | D                                 |
| Institut Pierre-Simon Laplace (IPSL)<br>France                                                                                                                                        | IPSL-CM5A-<br>LR     | 3.8°L39  | 2°L31            | no                      | SST anomalies<br>(Reynolds<br>observations)                                | No                                                                                                          | yes                              | no                                    | white noise on SST                   | С                                        | D, I1                             |
| Atmosphere and Ocean Research<br>Institute (The University of Tokyo),<br>National Institute for Environmental<br>Studies, and Japan Agency for<br>Marine-Earth Science and Technology | MIROC4h              | 0.6°L56  | 0.3°L48          | no                      | SST, T&S (Ishii and<br>Kimoto 2009)                                        | no                                                                                                          | yes                              | start dates and ensemble assimilation |                                      | E                                        | D,I1,I2                           |
|                                                                                                                                                                                       | MIROC5               | 1.4°L40  | 1.4°L50          |                         |                                                                            |                                                                                                             |                                  |                                       |                                      |                                          |                                   |







### CFS v2 (Saha et al. 2013)

- 1. An atmosphere of T126L64 (GFS)
- 2. An interactive ocean (MOM4) with 40 levels in the vertical, to a depth of 4737 m, and horizontal resolution of 0.25 degree at the tropics, tapering to a global resolution of 0.5 degree northwards and southwards of 10N and 10S respectively
- 3. An interactive 3 layer sea-ice model
- 4. An interactive land model with 4 soil levels

### CFSv2 Biases

- TOA radiative imbalance
   +7.4 W m<sup>-2</sup> downward, 3.6 W m<sup>-2</sup> into ocean
- AMOC disappears
   Time scale of years
- Sea ice disappears
   Time scale of years

## How Serious a Problem is CFSv2 AMOC bias? Consider AMOC in CFSv1

Mean Atlantic Meridional Overturning Streamfunction (Sv)



Huang, Hu, Schneider, Wu, Xue, and Klinger 2012

### CFSv2 AMOC in 30-year runs



## Question: What is the role of AMOC for Decadal Prediction?

### CFSv2 Known Errors

- A serious code bug was identified by COLA scientists in the atmosphereocean coupling in the North Atlantic.
  - Large errors in surface fluxes as seen by the ocean. Location of errors depends on number of processors.
    - NE North Atlantic in COLA runs
    - NW North Atlantic in NCEP runs
  - Only small improvement in AMOC strength when error is corrected.

## **Experiments**

| Run            | Initial<br>Condition<br>Years | Length<br>(years) | Ensemble<br>Members | Atmosphere ICs | Ocean ICs |
|----------------|-------------------------------|-------------------|---------------------|----------------|-----------|
| NCEP Volc      | 1980-2005                     | 10                | 4                   |                | CFSR      |
|                | every 5 years                 |                   |                     |                |           |
|                | + selected                    |                   |                     |                |           |
|                | years                         |                   |                     |                |           |
| COLA Volc      | 1960-1990                     | 10                | 3                   |                |           |
|                | every 5 years                 | 10                |                     |                |           |
| COLA<br>NoVolc | 1960-2005                     | 10                | 4                   | CFSR           |           |
|                | every 5 years                 | 10                | 4                   |                |           |
|                | 1960-2005                     | 3                 | 2                   |                | NEMOVAR   |
|                | yearly                        | 3                 |                     |                | NEWOVAK   |
|                | 1960-2005                     | 10                | 1                   |                |           |
|                | yearly                        | 10                | <b>!</b>            |                |           |
|                | 1960, 1980,<br>2005           | 30                | 4                   |                |           |

NO HISTORICAL/UNINITIALIZED/FREE RUNS

# Model Performance Interannual Time Scales (COLA NoVolc)

NINO3.4 SSTA ACC



### Results Decadal Time Scales

## **Outline of Analysis**

- Compare common cases for NCEP Volc, COLA Volc, and COLA NoVolc
  - CMIP5 ensembles for 1980, 1985,1990, 1995, 2000
  - Ensemble means
- Verification data
  - NCEP reanalysis for atmosphere
  - NEMOVAR reanalysis for ocean

## 2m Air Temperature Predictions

## Year 2-5, 6-9 Averages

### T2m Anomaly Correlation

**YEARS 2-5** 



### T2m Biases

### YEARS 2-5













YEARS 6-9





**COLA NoVolc** 

### T2m Bias Differences



## Atlantic Multidecadal Variability SST Index 1980-2010

### **COLA NoVolc**





### **NCEP Volc**





# What are the Mechanisms for the Decadal Predictability of T2m in these Experiments?

- The memory of the system is in the ocean's thermal and mechanical inertia, which determines the time scales of the response to external forcing and of the internal variability.
- This suggests a heat budget analysis would be a good place to start.

### **Heat Content Predictions**

 Heat content H is vertical integral of internal energy :

$$H(x,y) = \int_{z=-D(x,y)}^{z=0} \rho cT \, dz \approx \rho cD(x,y) \overline{T}(x,y)$$

where  $\overline{T}$  is the vertically averaged temperature, and

D(x,y) is taken to be the full depth of the ocean.

## Year 2-5, 6-9 Averages

 Verification against NEMOVAR Ocean Analysis.

# Heat Content Anomaly Correlation

### YEARS 2-5



### **Heat Content Biases**

YEARS 2-5 **NCEP Volc COLA Volc COLA NoVolc** Bias NEMO HC 1980-2000, yrs 2-5 Bias NCEP HC 1980-2000, yrs 2-5 Bias NEMOV HC 1980-2000, yrs 2-5 Bias NEMO HC 1980-2000, yrs 6-9 Bias NCEP HC 1980-2000, yrs 6-9 Bias NEMOV HC 1980-2000, yrs 6-9 -0.3 -0.1 -0.05 0.05 0.1 0.3 -0.5 -0.3 -0.1 -0.05 0.05 0.1 0.3 0.5 YEARS 4-9

Plots are of H/(4500ρc), units °K

### **Heat Content Bias Differences**

### COLA Volc minus NCEP Volc



Years 2-5



Years 6-9

### COLA Volc minus COLA NoVolc





Heat content biases show substantial ocean memory, because differences between the CFSR and NEMOVAR ocean reanalyses are so large,

Anomalies do not demonstrate much memory.

## Heat Content Budget

 H Satisfies the 2-dimensional energy budget:

$$\frac{dH}{dt} = NHF + O \tag{1}$$

NHF is net surface heat flux

O is the tendency due to ocean dynamics and physics

# Global Mean Ocean Heat Content Diagnosis

Compare dH/dt and NHF
 [ ] = global mean

$$\left[\frac{dH}{dt}\right] = \left[NHF\right] \tag{2}$$

- Verified: CFSv2 results satisfy (2).
- Examine [ H ], [ dH/dt ] for CFSR and NEMOVAR reanalyses, NCEP and COLA forecasts.

# Global Mean *H* From Ocean Reanalyses



### [H] Predictions



## [dH/dt]



# Local Heat Content Partial Diagnosis

- Compare dH/dt and NHF
  - Local case: consider the correlation of dH/dt and NHF
    - If O=0, the correlation is 1.
    - The difference of the correlation from 1 is a measure of the importance of ocean dynamics in the heat content budget.
    - Can calculate O as a residual to explicitly examine the role of ocean dynamics.

## Example: Correlation of H and NHF Annual Cycles

Correlation Annual Cycles nfh hctend Cola NoVolc e=49



GrADS: COLA/IGFS 2013-05-09-14:24

## Correlation NHF and dH/dt, 2 year running means

### **COLA NoVolc**

#### **COLA Volc**



### **Summary/Conclusions**

- 1. Versions of CFSv2 used for COLA and NCEP predictions seem to be similar.
- 2. NCEP and COLA VOLC have similar skill for 2m air temperature decadal, despite large biases and strong differences in ocean heat content initialization.
- 3. Volcanic forcing is a strong contributor to "skill" for the CMIP5 experimental design.
- 4. Heat budget diagnosis shows promise for understanding mechanisms.