The grandfather of decadal variability?

Guy Stewart Callendar
(1898 — 1964)

Callendar (1938) first

to show increase in

global temperatures
and related this to CO,

Published (almost)
exactly 75 years ago!




Exactly 75 years ago: Callendar (1938, QJRMS)

GLOBAL LAND TEMPERATURES (RELATIVE TO 1880-1935)

1.2 Callendar (1938)
Callendar (1961)

1" = CRUTEM4 (Jones et al. 2012) — 60°S—60°N
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Evaluating Smith et al. 2007
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Prediction is very difficult, especially about the future

Anomaly (°C)

-- Niels Bohr
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Evaluating Smith et al. 2007 @ Nations| Centre for

Prediction is very difficult, especially about the future
-- Niels Bohr
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Reliability of seasonal to decadal pre @ Atmospherc Science

e Can seasonal to decadal prediction systems support
production of reliable probabilistic forecasts?

Reliable Biased Underdispersive  Overdispersive

(a) (b) (¢) (d)

/N A

Fig. 8.1 from Weigel (2012)
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Reliability and dispersion @ Naloral Conro o)

o a) SST North Atlantic 2-5 yr o RMSE in Nino 3.4 predictions from ECMWF
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e Dispersion: ensemble spread
Reliability: forecast probabilities  should be the same as RMSE —
should match observed relative necessary for reliability
frequency

Corti et al. 2012 & see poster Weisheimer et al. 2011



Parallel DePreSys ensemble ¢ @ Naloral Conro o)

* We consider the spread-error m+1 a,0)
ratio for different lead times: m  RMSE(7)

* Ratio > 1: overdispersion (underconfident) m = number of

. . . . ensemble members
e Ratio < 1: underdispersion (overconfident)

ENSEMBLE DESIGN - 3 parallel ensembles with HadCM3:
DePreSys ICE DePreSys PPE NoAssim PPE

* All have 46 hindcasts (1960-2005), 9 ensemble members

* Both DePreSys ensembles are anomaly initialised from obs.

 Initial condition ensemble (ICE) uses standard HadCM3

* Perturbed Physics Ensembles (PPE) use 9 spun-up versions of
HadCM3 with perturbations to 29 atmospheric parameters

* This analysis compares hindcast SSTs with HadISST

* Bias correction as in Kharin et al. 2012



Spread-error ratio - first seaso @ Atmospheric Science
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First season

* Underdispersion consistent with many other seasonal
prediction systems

* Perturbed physics ensemble has improved reliability
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Spread-error ratio — first year @ AtmosphenioScits

NATURAL ENVIRONMENT RESEARCH COUNCIL

DeF‘reSys ICE DePreSys PPE

First season

Year 1

* Dispersion increases when considering year 1
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Spread-error ratio — first three @ Atmospheric Science

NATURAL ENVIRONMENT RESEARCH COUNCIL

DePreSys ICE DePreSys PPE

First season

Year 1

Year 3
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Spread-error ratio — first nine Atmospheric Sciencs

NATURAL ENVIRONMENT RESEARCH COUNCIL

DePreSys PPE NoAssim PPE

60

First season

Year 1

Year 3

Year 9
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What causes the overdispersi @ AtmosphenioScits

* For a reliable system, observations & ensemble
forecasts need to have same climatological variance

HadCM3 control SSTs HadISST (detrended)
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What causes the overdispersic @ AonherE G
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* For a reliable system, observations & ensemble
forecasts need to have same climatological variance

Ratio of model to observed Year 9 dispersion ratio in
variability NoAssim PPE
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Factors affecting dispersion in DePreSys SST forecasts

Forecast
‘ Decadal )
lead time
Season 1l Year1l Year3 Year 9

*  overdispersion

Excessive model internal variability

-ion reduces spread L underdispersion

Parameter perturbations produce larger
spread than initial condition perturbations

Spatial variation of reliability
* North Atlantic most overdispersed

 Underdispersion in Tropical Pacific for all lead times



o . National Centre for
I m p I ICa t IoNns @ Atmospheric Science

* Ensemble prediction system design

e Climate model variability is at least as important
as any perturbation scheme

e Simulated variability should be assessed in
forecast system design

* Both skill and reliability should be assessed
when analysing hindcasts

* Dispersion estimates are robust to considering
fewer start dates (not shown)



Global Mean Surface Air Temperature — CMIP5 Pre—-Industrial Controls
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