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Scalability of 4D-Var

The computational cost of 4D-Var is dominated by the cost of the linear
and adjoint model integrations.

So, why does the forecast model scale well as the number of processors
increases, but 4D-Var scales badly?
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Characterisation of the forecast model

A typical forecast model for NWP:

has a grid with O(106) vertical columns

has a timestep of O(103) seconds

produces forecasts O(106) seconds (≈10 days) ahead.
I ⇒ a forecast requires O(1000) timesteps

To be useful, the forecast must be produced within O(1) hour.

To achieve this, the model is parallelised over O(1000) processors.

Each processor performs calculations for O(1000) grid columns
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Parallelising the forecast model

NWP models are currently parallelised in the horizontal only.

Each processor is assigned a number of grid columns, and performs the
calculations for all the levels and all the timesteps of those columns.

But, increases in resolution are usually accompanied by:

decreases in timestep (for numerical stability and/or accuracy)

increases in the number of levels (to keep a reasonable ratio of
vertical/horizontal resolution)

So, as resolution increases, there is more work per grid column.

To produce the forecast within the required O(1) hour, we must give each
processor fewer grid columns to process (and employ more processors).
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Parallelising the forecast model

If we assume that the number of vertical levels and the number of
timesteps required to produce the forecast are both proportional to√

total number of grid columns, then:

work per grid column ∝ total number of grid columns

grid columns per processor ∝ 1/(total number of grid columns)
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Parallelising the forecast model

Current global NWP models assign O(1000) grid columns per processor.

Inter-processor communication and halo calculations start to dominate
over computation if we have fewer than O(10) grid columns per processor.

This will happen once models reach resolutions O(10) finer than current
models.

I.e. the current approach will start to fail when models reach O(1km)
global resolution.
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Characterisation of 4D-Var

Now consider a typical 4D-Var:

Each inner-loop iteration involves two 12 hour integrations (TL and
adjoint).

I ⇒ O(105) seconds of forecast per iteration.

The timestep is O(103) seconds.
I ⇒ O(100) timesteps per iteration.

An analysis requires O(100) iterations.
I ⇒ 4D-Var requires O(104) timesteps

To be useful, the analysis must be produced within O(1) hour.

4D-Var performs O(10) times more timesteps than the forecast model, but
must run in a similar time.
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Parallelising 4D-Var

To run 10 times more timesteps in the available time, we reduce the
number of grid columns by a factor of 10 (by running at lower resolution).

4D-Var has O(100) grid columns per processor.

In a multi-incremental analysis, the low-resolution minimisations may have
O(10) grid columns per processor.

(For example, the first minimisation of the ECMWF 4D-Var has ≈ 20 grid
columns per processor.)
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Parallelising 4D-Var
The problem of parallelising 4D-Var is not fundamentally different to that
of parallelising the forecast model.

4D-Var benefits directly from improvements in the parallelisation of
the forecast model.

In both cases, the current (horizontal-only) approach eventually fails
because the number of processors required increases faster than the
number of grid columns.

The forecast model can continue with the current approach for another
10–20 years.

The inner-loops of 4D-Var are already running out of parallelism.

Horizontal-only paralellisation is no longer enough. We need to find new
dimensions to parallelise.
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Weak-constraint 4D-Var
Let us define the analysis window as t0 ≤ t ≤ tN+1

We wish to estimate the sequence of states x0 . . . xN (valid at times
t0 . . . tN), given:

A prior xb (valid at t0).

A set of observations y0 . . . yN .
Each yk is a vector containing, typically, a large number of
measurements of a variety of variables distributed spatially and in the
time interval [tk , tk+1).

4D-Var is a maximum likelihood method. We define the estimate as the
sequence of states that minimizes the cost function:

J(x0 . . . xN) = − log (p(x0 . . . xN |xb; y0 . . . yN))

+const.
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Weak-constraint 4D-Var
Using Bayes’ theorem, and assuming unbiased Gaussian errors, the
weak-constraint 4D-Var cost function can be written as:

J(x0 . . . xN) =
1

2
(x0 − xb)T B−1 (x0 − xb)

+
1

2

N∑
k=0

(Hk(xk)− yk)T R−1k (Hk(xk)− yk)

+
1

2

N∑
k=1

(qk − q̄)TQ−1k (qk − q̄) .

where qk = xk −Mk(xk−1)

B, Rk and Qk are covariance matrices of background, observation and
model error. Hk is an operator that maps model variables xk to observed
variables yk , and Mk represents an integration of the numerical model
from time tk−1 to time tk .
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Weak Constraint 4D-Var: Quadratic Inner Loops
The inner loops of incremental weak-constraint 4D-Var minimise:

J(δx0, . . . , δxN) =
1

2
(δx0 − b)T B−1 (δx0 − b)

+
1

2

N∑
k=0

(Hkδxk − dk)T R−1k (Hkδxk − dk)

+
1

2

N∑
k=1

(δqk − ck)TQ−1k (δqk − ck)

where δqk = δxk −Mkδxk−1,
and where b, ck and dk come from the outer loop:

b = xb − x0

ck = q̄ − qk

dk = yk −Hk(xk)
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Weak Constraint 4D-Var: Quadratic Inner Loops
We simplify the notation by defining some 4D vectors and matrices:

δx =


δx0
δx1
...
δxN

 δp =


δx0
δq1
...
δqN


These vectors are related through δqk = δxk −Mkδxk−1.

We can write this relationship in matrix form as:

δp = Lδx

where:

L =


I
−M1 I

−M2 I
. . .

. . .

−MN I


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Weak Constraint 4D-Var: Quadratic Inner Loops

We will also define:

R =


R0

R1

. . .

RN

 , D =


B

Q1

. . .

QN

 ,

H =


H0

H1

. . .

HN

 , b =


b
c1
...
cN

 d =


d0
d1
...
dN

 .
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Weak Constraint 4D-Var: Quadratic Inner Loops

With these definitions, we can write the inner-loop cost function as

J =
1

2
(δp− b)TD−1(δp− b) +

1

2
(Hδx− d)TR−1(Hδx− d)

Eliminating δp using δp = Lδx allows us to express J as a function of δx:

J(δx) =
1

2
(Lδx− b)TD−1(Lδx− b) +

1

2
(Hδx− d)TR−1(Hδx− d)

Alternatively, we can express J as a function of δp:

J(δp) =
1

2
(δp− b)TD−1(δp− b) +

1

2
(HL−1δp− d)TR−1(HL−1δp− d)
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Weak Constraint 4D-Var: Quadratic Inner Loops

L =


I
−M1 I

−M2 I
. . .

. . .

−MN I



δp = Lδx can be done in parallel: δqk = δxk −Mkδxk−1.

We know all the δxk−1
′s. We can apply all the Mk

′s simultaneously.

An algorithm involving only L is time-parallel.
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Weak Constraint 4D-Var: Quadratic Inner Loops

L =


I
−M1 I

−M2 I
. . .

. . .

−MN I



δx = L−1δp is sequential: δxk = Mkδxk−1 + δqk .

We have to generate each δxk−1 in turn before we can apply the next Mk .

An algorithm involving L−1 is sequential.
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Forcing Formulation

J(δp) =
1

2
(δp− b)TD−1(δp− b) +

1

2
(HL−1δp− d)TR−1(HL−1δp− d)

The form of cost function resembles that of strong-constraint 4D-Var, and
it can be minimised using techniques that have been developed for
strong-constraint 4D-Var.

In particular, we can precondition it using D1/2 to diagonalise the first
term:

J(χ) =
1

2
χTχ+

1

2
(HL−1δp− d)TR−1(HL−1δp− d)

where δp = D1/2χ+ b.

Unfortunately, this version of the cost function is sequential, since it
contains L−1.
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4D State Formulation

J(δx) =
1

2
(Lδx− b)TD−1(Lδx− b) +

1

2
(Hδx− d)TR−1(Hδx− d)

This version of the cost function is parallel. It does not contain L−1.

Unfortunately, it is difficult to precondition.
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4D State Formulation

J(δx) =
1

2
(Lδx− b)TD−1(Lδx− b) +

1

2
(Hδx− d)TR−1(Hδx− d)

The usual method of preconditioning used in 4D-Var defines a control
variable χ that diagonalizes the first term of the cost function

δx = L−1(D1/2χ+ b)

With this change-of-variable, the cost function becomes:

J(χ) =
1

2
χTχ+

1

2
(Hδx− d)TR−1(Hδx− d)

But, we have introduced a sequential model integration (i.e. L−1) into the
preconditioner.
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4D State Formulation

Since L−1 appears only in the preconditioner, it is tempting to replace it
by something cheaper.

Unfortunately, this destroys the preconditioning, due to the extreme
ill-conditioning of D. (See: Haben et al 2011)

If we approximate L by L̃ in the preconditioner, the Hessian matrix of the
first term of the cost function becomes

D1/2L̃−TLTD−1LL̃−1D1/2

Because D is highly ill-conditioned, the inner D−1 does not cancel the
outer D1/2’s, and the Hessian remains ill conditioned unless L̃ = L.
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Lagrangian Dual (4D-PSAS)

A third possibility for minimising the cost function is the Lagrangian dual
(known as 4D-PSAS in the meteorological community):

δx = L−1DL−THTµ+ L−1b

where µ minimises:

Φ(µ) =
1

2
µT(R + HL−1DL−THT)µ+ µ(HL−1b− d)

Clearly, this is a sequential algorithm, since it contains L−1.
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The Saddle Point Formulation

We have seen that, of the standard formulations of 4D-Var, only the
4D-state formulation is capable of being parallelised in the time dimension.

However, the 4D-state formulation is difficult to precondition.

The saddle point formulation is a new formulation of 4D-Var that is both
time-parallel and can be preconditioned efficiently.
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The Saddle Point Formulation

J(δx) =
1

2
(Lδx− b)TD−1(Lδx− b) +

1

2
(Hδx− d)TR−1(Hδx− d)

At the minimum:

∇J = LTD−1(Lδx− b) + HTR−1(Hδx− d) = 0

Define:
λ = D−1(b− Lδx), µ = R−1(d−Hδx)

Then:

Dλ+ Lδx = b
Rµ+ Hδx = d

LTλ+ HTµ = 0

 =⇒

 D 0 L
0 R H
LT HT 0

 λ
µ
δx

 =

 b
d
0


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Saddle Point Formulation

 D 0 L
0 R H
LT HT 0

 λ
µ
δx

 =

 b
d
0



We call this the saddle point formulation of weak-constraint 4D-Var.

The block 3× 3 matrix is a saddle point matrix. It is real, symmetric,
indefinite.

Note that the matrix contains no inverse matrices.

We can apply the matrix without requiring multiplication by L−1.

The saddle point formulation is time paralel.
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Saddle Point Formulation

Another way to derive the saddle point formulation is to regard the
minimisation as a constrained problem:

min
δp,δw

J(δp, δw) = (δp− b)TD−1(δp− b) + (δw − d)TR−1(δw − d)

subject to δp = Lδx and δw = Hδx.

Introducing Lagrange multipliers λ and µ for the constraints gives the
Lagrangian:

L(δx, δp, δw, λ, µ) = J + λT(δp− Lδx) + µT(δw −Hδx)

Setting the gradient of this function to zero gives a system of 5 linear
equations, which we can reduce to 3 by eliminating δp and δw.
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Saddle Point Formulation

Lagrangian: L(δx, δp, δw, λ, µ)

4D-Var solves the primal problem: minimise along AXB.

4D-PSAS solves the Lagrangian dual problem: maximise along CXD.

The saddle point formulation finds the saddle point of L.

The saddle point formulation is neither 4D-Var nor 4D-PSAS.
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Saddle Point Formulation

To solve the saddle point system, we have to precondition it.

Preconditioning saddle point systems is the subject of much current
research.

See e.g. Benzi and Wathen (2008), Benzi, Golub and Liesen (2005).

One possibility (c.f. Bergamaschi, et al., 2011) is to approximate the
saddle point matrix by:

P̃ =

 D 0 L̃
0 R 0

L̃T 0 0

 ⇒ P̃−1 =

 0 0 L̃−T

0 R−1 0

L̃−1 0 −L̃−1DL̃−T



Note that D−1 is not required.
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Saddle Point Formulation

The experimental results shown in this talk used either L̃ = L, or:

L̃ =


I
−I I

−I I
. . .

. . .

−I I



Selime will say much more about preconditioning the saddle point system
in her talk.
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Results from a toy system

The practical results shown in the next few slides are for a simplified
(toy) analogue of a real system.

The model is a two-level quasi-geostrophic channel model with 1600
gridpoints.

The model has realistic error-growth and time-to-nonlinearity

There are 100 observations of streamfunction every 3 hours, plus 100
wind observations and 100 wind-speed observations every 4 hours.

The error covariances are assumed to be horizontally isotropic and
homogeneous, with a Gaussian spatial structure.

The analysis window is 24 hours, and is divided into eight 3h
subwindows.

The solution algorithm was GMRES (implemented by Selime Gürol).

Selime also ran the experiments.

We used the Object-Oriented Prediction System (OOPS).
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Saddle Point Formulation

Convergence as a function of iteration
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Saddle Point Formulation

Even without parallelisation, the saddle point formulation is competitive
with the forcing formulation.

We can estimate the potential parallel speed-up by counting the number of
sequential sub-window integrations required by the different formulations.

At each iteration, the forcing formulation performs 8 sequential
sub-window integrations in the TL, followed by 8 in the adjoint.

The saddle point algorithm can run all 16 integrations in parallel.
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Saddle Point Formulation

Convergence as a function of subwindow integrations (≈ wallclock time)
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Conclusions

Eventually, a horizontal-only approach to parallelising NWP models
must fail.

For the forecast model, this will happen when resolutions approach
1km (global).

For 4D-Var, we are already there.

The future viability of 4D-Var as an algorithm for Numerical Weather
Prediction depends on finding, and exploiting, new dimensions of
parallelism.

The saddle point formulation of weak-constraint 4D-Var allows
parallelisation in the time dimension.

The algorithm is competitive with existing algorithms and has the
potential to allow 4D-Var to remain computationally viable on
next-generation computer architectures.
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Saddle Point Formulation

Backup Slides. . .
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Saddle Point Formulation

Convergence as a function of iteration — 12 sub-windows
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Saddle Point Formulation

Convergence of residual norms — 8 sub-windows
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Saddle Point Formulation
OOPS QG model. 24-hour window with 8 subwindows.
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Ritz Values of A.

Converged Ritz values after 500 Arnoldi iterations are shown in blue. Unconverged values in red.
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Saddle Point Formulation
OOPS QG model. 24-hour window with 8 subwindows.
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Ritz Values of P̃−1A for L̃ = L.

Converged Ritz values after 500 Arnoldi iterations are shown in blue. Unconverged values in red.
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Saddle Point Formulation
OOPS QG model. 24-hour window with 8 subwindows.
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Ritz Values of P̃−1A for L̃ = I.

Converged Ritz values after 500 Arnoldi iterations are shown in blue. Unconverged values in red.

Mike Fisher (ECMWF) Parallelisation in the time dimension 1 December 2014 40 / 40


	Scalability of 4D-Var
	Weak-Constraint 4D-Var
	Notation in terms of 4D vectors and matrices
	Parallelisation in the time dimension
	Standard formulations
	The saddle point formulation
	Results from a toy system

	Conclusions

