Preconditioning Saddle-Point Formulation of the variational data assimilation

M. Fisher ${ }^{1}$, S. Gratton ${ }^{2,3}$, S. Gürol ${ }^{3}$
${ }^{1}$ ECMWF, Reading, UK
${ }^{2}$ ENSEEIHT, Toulouse, France
${ }^{3}$ CERFACS, Toulouse, France

Colloque National sur l'Assimilation de données, Toulouse, France
1 December 2014

From Mike's presentation we have seen that:

- Incremental 4D-Var suffers from parallelization in the time dimension.
- Solution: Saddle-point approach

From Mike's presentation we have seen that:

- Incremental 4D-Var suffers from parallelization in the time dimension.
- Solution: Saddle-point approach

What will we discuss in this talk?

- Can we maintain good convergence properties of 4D-Var?
- Can we further accelerate the convergence rate?
Preconditioning of saddle point approach

Outline

- Saddle point approach of 4D-Var
- Preconditioning of saddle point formulation
- Numerical results
- Conclusions

Saddle Point Approach

- Let us consider weak-constraint 4D-Var as a constrained problem and write the Lagrangian function. Then the stationary point of \mathcal{L} satisfies the system of equations that can be written in a matrix form as:

$$
\left(\begin{array}{ccc}
\mathrm{D} & \mathbf{0} & \mathbf{L} \\
\mathbf{0} & \mathbf{R} & \mathbf{H} \\
\mathrm{~L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{\lambda} \\
\boldsymbol{\mu} \\
\boldsymbol{\delta} \mathbf{x}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{b} \\
\mathbf{d} \\
\mathbf{0}
\end{array}\right)
$$

- This system is called the saddle-point formulation of 4D-Var.
- $\mathbf{L}=\left(\begin{array}{ccccc}I & & & & \\ -M_{1} & I & & & \\ & -M_{2} & I & & \\ & & \ddots & \ddots & \\ & & & -M_{N} & I\end{array}\right)$ is an n-by-n matrix.
- $\mathbf{H}=\operatorname{diag}\left(\mathbf{H}_{\mathbf{0}}, \mathbf{H}_{\mathbf{1}}, \ldots, \mathbf{H}_{\mathbf{N}}\right)$ is an n -by-m matrix.
- $\mathbf{D}=\operatorname{diag}\left(\mathbf{B}, \mathbf{Q}_{\mathbf{1}}, \ldots, \mathbf{Q}_{\mathbf{N}}\right)$ is an n-by-n matrix.
- $\mathbf{R}=\operatorname{diag}\left(\mathbf{R}_{\mathbf{0}}, \mathbf{R}_{\mathbf{1}}, \ldots, \mathbf{R}_{\mathbf{N}}\right)$ is an m-by-m matrix.

Saddle Point Approach

- In matrix form:

$$
\underbrace{\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \mathbf{L} \\
\mathbf{0} & \mathbf{R} & \mathbf{H} \\
\mathbf{L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)}_{\mathcal{A}}\left(\begin{array}{c}
\boldsymbol{\lambda} \\
\boldsymbol{\mu} \\
\boldsymbol{\delta x}
\end{array}\right)=\left(\begin{array}{l}
\mathbf{b} \\
\mathbf{d} \\
\mathbf{0}
\end{array}\right)
$$

where \mathcal{A} is a $(2 n+m)$-by- $(2 n+m)$ indefinite symmetric matrix.

Saddle Point Approach

- In matrix form:

$$
\underbrace{\left(\begin{array}{ccc}
\mathrm{D} & \mathbf{0} & \mathrm{~L} \\
0 & \mathrm{R} & \mathbf{H} \\
\mathbf{L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)}_{\mathcal{A}}\left(\begin{array}{c}
\boldsymbol{\lambda} \\
\boldsymbol{\mu} \\
\boldsymbol{\delta x}
\end{array}\right)=\left(\begin{array}{l}
\mathbf{b} \\
\mathbf{d} \\
\mathbf{0}
\end{array}\right)
$$

where \mathcal{A} is a $(2 n+m)$-by- $(2 n+m)$ indefinite symmetric matrix.

- The solution of this problem is a saddle point

Saddle Point Approach

- In matrix form:

$$
\underbrace{\left(\begin{array}{ccc}
\mathrm{D} & \mathbf{0} & \mathrm{~L} \\
0 & \mathrm{R} & \mathbf{H} \\
\mathbf{L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)}_{\mathcal{A}}\left(\begin{array}{c}
\boldsymbol{\lambda} \\
\boldsymbol{\mu} \\
\boldsymbol{\delta x}
\end{array}\right)=\left(\begin{array}{l}
\mathbf{b} \\
\mathbf{d} \\
\mathbf{0}
\end{array}\right)
$$

where \mathcal{A} is a $(2 n+m)$-by- $(2 n+m)$ indefinite symmetric matrix.

- The solution of this problem is a saddle point

\rightarrow This approach is time-parallel.

Saddle Point Approach

- In matrix form:

$$
\underbrace{\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \mathbf{L} \\
\mathbf{0} & \mathbf{R} & \mathbf{H} \\
\mathbf{L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)}_{\mathcal{A}}\left(\begin{array}{c}
\boldsymbol{\lambda} \\
\boldsymbol{\mu} \\
\boldsymbol{\delta x}
\end{array}\right)=\left(\begin{array}{l}
\mathbf{b} \\
\mathbf{d} \\
\mathbf{0}
\end{array}\right)
$$

where \mathcal{A} is a $(2 n+m)$-by- $(2 n+m)$ indefinite symmetric matrix.

- The solution of this problem is a saddle point

\rightarrow This approach is time-parallel.
\rightarrow Solution algorithm: GMRES method with a preconditioner.

Outline

- Saddle point approach of 4D-Var
- Preconditioning of saddle point formulation
- Numerical results
- Conclusions

Preconditioning

- A preconditioner attempts to improve the spectral properties of the system matrix \mathcal{A}.

Preconditioning

- A preconditioner attempts to improve the spectral properties of the system matrix \mathcal{A}.
- When using GMRES, a clustered spectrum often results in rapid convergence, especially the departure from normality of the preconditioned matrix is not too high (Benzi et. al 2005).

Preconditioning

- A preconditioner attempts to improve the spectral properties of the system matrix \mathcal{A}.
- When using GMRES, a clustered spectrum often results in rapid convergence, especially the departure from normality of the preconditioned matrix is not too high (Benzi et. al 2005).
\rightarrow When solving an indefinite saddle point system with GMRES, it is crucial to find an efficient preconditioner.

Preconditioning

- A preconditioner attempts to improve the spectral properties of the system matrix \mathcal{A}.
- When using GMRES, a clustered spectrum often results in rapid convergence, especially the departure from normality of the preconditioned matrix is not too high (Benzi et. al 2005).
\rightarrow When solving an indefinite saddle point system with GMRES, it is crucial to find an efficient preconditioner.

Efficient preconditioner \mathcal{P}

- is an approximation to \mathcal{A}
- the cost of constructing and applying the preconditioner should be less than the gain in computational cost
- exploits the block structure of the problem for saddle point systems

Preconditioning

- A preconditioner attempts to improve the spectral properties of the system matrix \mathcal{A}.
- When using GMRES, a clustered spectrum often results in rapid convergence, especially the departure from normality of the preconditioned matrix is not too high (Benzi et. al 2005).
\rightarrow When solving an indefinite saddle point system with GMRES, it is crucial to find an efficient preconditioner.

Efficient preconditioner \mathcal{P}

- is an approximation to \mathcal{A}
- the cost of constructing and applying the preconditioner should be less than the gain in computational cost
- exploits the block structure of the problem for saddle point systems Implementation
- Solving a system $\mathcal{A} \mathbf{u}=\mathbf{f}$ with a preconditioner \mathcal{P} requires solving

$$
\left(\mathcal{P}^{-1} \mathcal{A}\right) \mathbf{u}=\mathcal{P}^{-1} \mathbf{f}
$$

Preconditioning Saddle Point Systems

$$
\mathcal{A}=\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \mathbf{L} \\
\mathbf{0} & \mathbf{R} & \mathbf{H} \\
\mathbf{L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{\mathrm{T}} \\
\mathbf{B} & \mathbf{0}
\end{array}\right)
$$

- Block preconditioners (Kuznetsov (1995), Murphy, Golub and Wathen (2000), Bramble and Pasciak (1988))

$$
\mathcal{P}=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{0} \\
\mathbf{0} & -\mathrm{S}
\end{array}\right), \quad \mathcal{P}=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{T} \\
\mathbf{0} & \mathbf{S}
\end{array}\right)
$$

where $\mathbf{S}=\mathbf{B A}^{\mathbf{1}} \mathbf{B}^{\boldsymbol{T}}$ is the Schur complement (the unpreconditioned 4D-Var Hessian).

- Constraint preconditioners (Bergamaschi et. al (2004), Gould and Wathen (2000), Benzi et al. 2005)

$$
\mathcal{P}=\left(\begin{array}{cc}
\widetilde{\mathbf{A}} & \mathbf{B}^{T} \\
\mathbf{B} & \mathbf{0}
\end{array}\right)
$$

It is assumed that solving the system involving \mathcal{P} is significantly easier than solving the original system.

- Hermitian and skew Hermitian splitting of \mathcal{A}, stationary iterative methods, multilevel methods, ... (Benzi et al (2005))

Preconditioning Saddle Point Formulation of 4D-Var

$$
\mathcal{A}=\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \mathbf{L} \\
\mathbf{0} & \mathbf{R} & \mathbf{H} \\
\mathbf{L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{\mathrm{T}} \\
\mathbf{B} & \mathbf{0}
\end{array}\right)
$$

- The inexact constraint preconditioner proposed by (Bergamaschi et. al. 2005) is promising for our application. The preconditioner can be chosen as:

$$
\mathcal{P}=\left(\begin{array}{cc}
\mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\
\widetilde{\mathbf{B}} & \mathbf{0}
\end{array}\right)=\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \widetilde{\mathbf{L}} \\
\mathbf{0} & \mathbf{R} & \mathbf{0} \\
\widetilde{\mathbf{L}}^{\mathrm{T}} & \mathbf{0} & \mathbf{0}
\end{array}\right)
$$

where

- $\widetilde{\mathbf{L}}$ is an approximation to the matrix \mathbf{L}
- $\widetilde{\mathbf{B}}=\left[\begin{array}{ll}\widetilde{\mathbf{L}}^{\mathrm{T}} & \mathbf{0}\end{array}\right]$ is a full row rank approximation of the matrix $\mathbf{B} \in \mathbb{R}^{n \times(m+n)}$

Preconditioning Saddle Point Formulation of 4D-Var

$$
\underbrace{\left(\begin{array}{ccc}
\mathrm{D} & \mathbf{0} & \mathrm{~L} \\
0 & \mathbf{R} & \mathbf{H} \\
\mathrm{~L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)}_{\mathcal{A}_{k}} \underbrace{\left(\begin{array}{c}
\boldsymbol{\lambda} \\
\mu \\
\boldsymbol{\delta}
\end{array}\right)}_{u}=\underbrace{\left(\begin{array}{l}
\mathbf{b} \\
\mathbf{d} \\
\mathbf{0}
\end{array}\right)}_{f_{k}}
$$

When solving a sequence of saddle point systems, can we further improve the preconditioning for the outer loops $k>1$?

Can we find low-rank updates for the inexact constraint preconditioner that approximates \mathcal{A}^{-1} or its effect on a vector?

Preconditioning Saddle Point Formulation of 4D-Var

- For $k=1$, we have the inexact constraint preconditioner:

$$
\mathcal{P}=\left(\begin{array}{cc}
\mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\
\widetilde{\mathbf{B}} & \mathbf{0}
\end{array}\right)
$$

Preconditioning Saddle Point Formulation of 4D-Var

- For $k=1$, we have the inexact constraint preconditioner:

$$
\mathcal{P}=\left(\begin{array}{cc}
\mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\
\widetilde{\mathbf{B}} & \mathbf{0}
\end{array}\right)
$$

- For $k>1$, we want to find a low-rank update $\Delta \mathbf{B}=\mathbf{B}-\widetilde{\mathbf{B}}$ and use the updated preconditioner:

$$
\mathcal{P}=\left(\begin{array}{cc}
\mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\
\widetilde{\mathbf{B}} & \mathbf{0}
\end{array}\right)+\left(\begin{array}{cc}
\mathbf{0} & \Delta \mathbf{B}^{\mathrm{T}} \\
\Delta \mathbf{B} & \mathbf{0}
\end{array}\right)
$$

Preconditioning Saddle Point Formulation of 4D-Var

- For $k=1$, we have the inexact constraint preconditioner:

$$
\mathcal{P}=\left(\begin{array}{cc}
\mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\
\widetilde{\mathbf{B}} & \mathbf{0}
\end{array}\right)
$$

- For $k>1$, we want to find a low-rank update $\Delta \mathbf{B}=\mathbf{B}-\widetilde{\mathbf{B}}$ and use the updated preconditioner:

$$
\mathcal{P}=\left(\begin{array}{cc}
\mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\
\widetilde{\mathbf{B}} & \mathbf{0}
\end{array}\right)+\left(\begin{array}{cc}
\mathbf{0} & \Delta \mathbf{B}^{\mathrm{T}} \\
\Delta \mathbf{B} & \mathbf{0}
\end{array}\right)
$$

\rightarrow GMRES performs matrix-vector products with \mathcal{A} :

$$
\underbrace{\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{\mathrm{T}} \\
\mathbf{B} & \mathbf{0}
\end{array}\right)}_{\mathcal{A}_{k}} \underbrace{\binom{\mathbf{u}_{1}}{\mathbf{u}_{2}}}_{\mathbf{u}_{j}^{(k)}}=\underbrace{\binom{\mathbf{b}}{\mathbf{c}}}_{\mathbf{f}_{j}^{(k)}}
$$

Preconditioning Saddle Point Formulation of 4D-Var

- For $k=1$, we have the inexact constraint preconditioner:

$$
\mathcal{P}=\left(\begin{array}{cc}
\mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\
\widetilde{\mathbf{B}} & \mathbf{0}
\end{array}\right)
$$

- For $k>1$, we want to find a low-rank update $\Delta \mathbf{B}=\mathbf{B}-\widetilde{\mathbf{B}}$ and use the updated preconditioner:

$$
\mathcal{P}=\left(\begin{array}{cc}
\mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\
\widetilde{\mathbf{B}} & \mathbf{0}
\end{array}\right)+\left(\begin{array}{cc}
\mathbf{0} & \Delta \mathbf{B}^{\mathrm{T}} \\
\Delta \mathbf{B} & \mathbf{0}
\end{array}\right)
$$

\rightarrow GMRES performs matrix-vector products with \mathcal{A} :

$$
\underbrace{\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{\mathrm{T}} \\
\mathbf{B} & \mathbf{0}
\end{array}\right)}_{\mathcal{A}_{k}} \underbrace{\binom{\mathbf{u}_{1}}{\mathbf{u}_{2}}}_{\mathbf{u}_{j}^{(k)}}=\underbrace{\binom{\mathbf{b}}{\mathbf{c}}}_{\mathbf{f}_{j}^{(k)}}
$$

\rightarrow We can use the pairs $\left(\mathbf{u}_{j}^{(k)}, \mathbf{f}_{j}^{(k)}\right)$ to find an update $\Delta \mathbf{B}$.

Preconditioning Saddle Point Formulation of 4D-Var

$$
\begin{aligned}
\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{\mathrm{T}} \\
\mathbf{B} & \mathbf{0}
\end{array}\right)\binom{\mathbf{u}_{1}}{\mathbf{u}_{2}}=\binom{\mathbf{b}}{\mathbf{c}} & \Rightarrow\left(\begin{array}{cc}
\mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\
\widetilde{\mathbf{B}} & \mathbf{0}
\end{array}\right)\binom{\mathbf{u}_{1}}{\mathbf{u}_{2}}+\left(\begin{array}{cc}
\mathbf{0} & \Delta \mathbf{B}^{\mathrm{T}} \\
\Delta \mathbf{B} & \mathbf{0}
\end{array}\right)\binom{\mathbf{u}_{1}}{\mathbf{u}_{2}}=\binom{\mathbf{b}}{\mathbf{c}} \\
& \Rightarrow\binom{\mathbf{A} \mathbf{u}_{1}+\widetilde{\mathbf{B}}^{\mathrm{T}} \mathbf{u}_{2}}{\widetilde{\mathbf{B}} \mathbf{u}_{1}}+\binom{\Delta \mathbf{B}^{\mathrm{T}} \mathbf{u}_{2}}{\Delta \mathbf{B} \mathbf{u}_{1}}=\binom{\mathbf{b}}{\mathbf{c}} \\
& \Rightarrow\binom{\Delta \mathbf{B}^{\mathrm{T}} \mathbf{u}_{2}}{\Delta \mathbf{B} \mathbf{u}_{1}}=\binom{\mathbf{b}-\mathbf{A} \mathbf{u}_{1}-\widetilde{\mathbf{B}}^{\mathrm{T}} \mathbf{u}_{2}}{\mathbf{c}-\widetilde{\mathbf{B}} \mathbf{u}_{1}}
\end{aligned}
$$

Preconditioning Saddle Point Formulation of 4D-Var

$$
\begin{aligned}
\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{\mathrm{T}} \\
\mathbf{B} & \mathbf{0}
\end{array}\right)\binom{\mathbf{u}_{1}}{\mathbf{u}_{2}}=\binom{\mathbf{b}}{\mathbf{c}} & \Rightarrow\left(\begin{array}{cc}
\mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\
\widetilde{\mathbf{B}} & \mathbf{0}
\end{array}\right)\binom{\mathbf{u}_{1}}{\mathbf{u}_{2}}+\left(\begin{array}{cc}
\mathbf{0} & \Delta \mathbf{B}^{\mathrm{T}} \\
\Delta \mathbf{B} & \mathbf{0}
\end{array}\right)\binom{\mathbf{u}_{1}}{\mathbf{u}_{2}}=\binom{\mathbf{b}}{\mathbf{c}} \\
& \Rightarrow\binom{\mathbf{A} \mathbf{u}_{1}+\widetilde{\mathbf{B}}^{\mathrm{T}} \mathbf{u}_{2}}{\widetilde{\mathbf{B}} \mathbf{u}_{1}}+\binom{\Delta \mathbf{B}^{\mathrm{T}} \mathbf{u}_{2}}{\Delta \mathbf{B} \mathbf{u}_{1}}=\binom{\mathbf{b}}{\mathbf{c}} \\
& \Rightarrow\binom{\Delta \mathbf{B}^{\mathrm{T}} \mathbf{u}_{2}}{\Delta \mathbf{B} \mathbf{u}_{1}}=\binom{\mathbf{b}-\mathbf{A} \mathbf{u}_{1}-\widetilde{\mathbf{B}}^{\mathrm{T}} \mathbf{u}_{2}}{\mathbf{c}-\widetilde{\mathbf{B}} \mathbf{u}_{1}}
\end{aligned}
$$

- Let's define the vectors \mathbf{r}_{b} and \mathbf{r}_{c} as

$$
\begin{aligned}
\mathbf{r}_{b} & =\mathbf{b}-\mathbf{A} \mathbf{u}_{1}-\widetilde{\mathbf{B}}^{\mathrm{T}} \mathbf{u}_{2} \\
\mathbf{r}_{c} & =\mathbf{c}-\widetilde{\mathbf{B}} \mathbf{u}_{1}
\end{aligned}
$$

- Then we have

$$
\begin{align*}
\Delta \mathbf{B}^{\mathrm{T}} \mathbf{u}_{2} & =\mathbf{r}_{b} \tag{1}\\
\Delta \mathbf{B} \mathbf{u}_{1} & =\mathbf{r}_{c} \tag{2}
\end{align*}
$$

\rightarrow We want to find an update ΔB satisfying these equations.

Preconditioning Saddle Point Formulation of 4D-Var

- A rank-1 update to ΔB can be given by

$$
\Delta \mathbf{B}=\alpha \mathbf{v w} \mathbf{w}^{\mathrm{T}}
$$

where $\mathbf{v} \in \mathbb{R}^{n}$ and $\mathbf{w} \in \mathbb{R}^{n+m}$.

Preconditioning Saddle Point Formulation of 4D-Var

- A rank-1 update to ΔB can be given by

$$
\Delta \mathbf{B}=\alpha \mathbf{v} \mathbf{w}^{\mathrm{T}}
$$

where $\mathbf{v} \in \mathbb{R}^{n}$ and $\mathbf{w} \in \mathbb{R}^{n+m}$.

- Substituting this relation into equations (1) and (2), we get

$$
\begin{aligned}
\Delta \mathbf{B}^{\mathrm{T}} \mathbf{u}_{2} & =\mathbf{r}_{b}
\end{aligned} \quad \Leftrightarrow \quad \alpha \mathbf{w} \mathbf{v}^{\mathrm{T}} \mathbf{u}_{2}=\mathbf{r}_{b}, \mathbf{w}^{\mathrm{T}} \mathbf{u}_{1}=\mathbf{r}_{c} .
$$

from which we obtain that

$$
\begin{aligned}
\mathbf{w} & =\mathbf{r}_{b} / \alpha \mathbf{v}^{\mathrm{T}} \mathbf{u}_{2} \\
\mathbf{v} & =\mathbf{r}_{c} / \alpha \mathbf{w}^{\mathrm{T}} \mathbf{u}_{1}
\end{aligned}
$$

Preconditioning Saddle Point Formulation of 4D-Var

- A rank-1 update to ΔB can be given by

$$
\Delta \mathbf{B}=\alpha \mathbf{\mathbf { w } ^ { \mathrm { T } }}
$$

where $\mathbf{v} \in \mathbb{R}^{n}$ and $\mathbf{w} \in \mathbb{R}^{n+m}$.

- Substituting this relation into equations (1) and (2), we get

$$
\begin{array}{rlll}
\Delta \mathbf{B}^{\mathrm{T}} \mathbf{u}_{2} & =\mathbf{r}_{b} & \Leftrightarrow \alpha \mathbf{w v}^{\mathrm{T}} \mathbf{u}_{2} & =\mathbf{r}_{b} \\
\Delta \mathbf{B} \mathbf{u}_{1} & =\mathbf{r}_{c} & \Leftrightarrow \quad \alpha \mathbf{w} \mathbf{w}^{\mathrm{T}} \mathbf{u}_{1} & =\mathbf{r}_{c}
\end{array}
$$

from which we obtain that

$$
\begin{aligned}
\mathbf{w} & =\mathbf{r}_{b} / \alpha \mathbf{v}^{\mathrm{T}} \mathbf{u}_{2} \\
\mathbf{v} & =\mathbf{r}_{c} / \alpha \mathbf{w}^{\mathrm{T}} \mathbf{u}_{1}
\end{aligned}
$$

- With the choice of

$$
\mathbf{w}=\mathbf{r}_{b} \quad \text { and } \quad \mathbf{v}=\mathbf{r}_{c}
$$

we can show that α is compatible and given as

$$
\alpha=1 / \mathbf{v}^{\mathrm{T}} \mathbf{u}_{2}=1 / \mathbf{w}^{\mathrm{T}} \mathbf{u}_{1}
$$

Preconditioning Saddle Point Formulation of 4D-Var

- As a result, an inexact constraint preconditioner \mathcal{P} can be updated from

$$
\mathcal{P}_{j+1}=\mathcal{P}_{j}+\left(\begin{array}{cc}
\mathbf{0} & \Delta \mathbf{B}^{T} \\
\Delta \mathbf{B} & \mathbf{0}
\end{array}\right)=\mathcal{P}_{j}+\left(\begin{array}{cc}
\mathbf{0} & \alpha \mathbf{w v ^ { T }} \\
\alpha \mathbf{v \mathbf { w } ^ { T }} & \mathbf{0}
\end{array}\right),
$$

where $\mathbf{w}=\mathbf{r}_{b}, \mathbf{v}=\mathbf{r}_{c}$ and $\alpha=1 / \mathbf{v}^{\mathrm{T}} \mathbf{u}_{2}$.

Preconditioning Saddle Point Formulation of 4D-Var

- As a result, an inexact constraint preconditioner \mathcal{P} can be updated from

$$
\mathcal{P}_{j+1}=\mathcal{P}_{j}+\left(\begin{array}{cc}
\mathbf{0} & \Delta \mathbf{B}^{T} \\
\Delta \mathbf{B} & \mathbf{0}
\end{array}\right)=\mathcal{P}_{j}+\left(\begin{array}{cc}
\mathbf{0} & \alpha \mathbf{w} \mathbf{v}^{\mathrm{T}} \\
\alpha \mathbf{v} \mathbf{w}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)
$$

where $\mathbf{w}=\mathbf{r}_{b}, \mathbf{v}=\mathbf{r}_{c}$ and $\alpha=1 / \mathbf{v}^{\mathrm{T}} \mathbf{u}_{2}$.

- We can rewrite this formula as

$$
\mathcal{P}_{j+1}=\mathcal{P}_{j}+\underbrace{\left(\begin{array}{ll}
\mathbf{0} & \mathbf{w} \\
\mathbf{v} & \mathbf{0}
\end{array}\right)}_{\mathbf{F}} \underbrace{\left(\begin{array}{cc}
\alpha \mathbf{w}^{T} & \mathbf{0} \\
\mathbf{0} & \alpha \mathbf{v}^{T}
\end{array}\right)}_{\mathbf{G}}
$$

where \mathbf{F} is an $(2 n+m)$-by- 2 matrix and \mathbf{G} is an 2 -by- $(2 n+m)$ matrix.

Preconditioning Saddle Point Formulation of 4D-Var

- As a result, an inexact constraint preconditioner \mathcal{P} can be updated from

$$
\mathcal{P}_{j+1}=\mathcal{P}_{j}+\left(\begin{array}{cc}
\mathbf{0} & \Delta \mathbf{B}^{T} \\
\Delta \mathbf{B} & \mathbf{0}
\end{array}\right)=\mathcal{P}_{j}+\left(\begin{array}{cc}
\mathbf{0} & \alpha \mathbf{w} \mathbf{v}^{\mathrm{T}} \\
\alpha \mathbf{v} \mathbf{w}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)
$$

where $\mathbf{w}=\mathbf{r}_{b}, \mathbf{v}=\mathbf{r}_{c}$ and $\alpha=1 / \mathbf{v}^{\mathrm{T}} \mathbf{u}_{2}$.

- We can rewrite this formula as

$$
\mathcal{P}_{j+1}=\mathcal{P}_{j}+\underbrace{\left(\begin{array}{cc}
\mathbf{0} & \mathbf{w} \\
\mathbf{v} & \mathbf{0}
\end{array}\right)}_{\mathbf{F}} \underbrace{\left(\begin{array}{cc}
\alpha \mathbf{w}^{T} & \mathbf{0} \\
\mathbf{0} & \alpha \mathbf{v}^{\top}
\end{array}\right)}_{\mathbf{G}}
$$

where \mathbf{F} is an $(2 n+m)$-by- 2 matrix and \mathbf{G} is an 2 -by- $(2 n+m)$ matrix.

- Using the Sherman-Morrison-Woodbury formula on this equation gives the inverse update as

$$
\mathcal{P}_{j+1}^{-1}=\mathcal{P}_{j}^{-1}-\mathcal{P}_{j}^{-1} \mathbf{F}\left(\mathbf{I}_{2}+\mathbf{G} \mathcal{P}_{j}^{-1} \mathbf{F}\right)^{-1} \mathbf{G} \mathcal{P}_{j}^{-1}
$$

Preconditioning Saddle Point Formulation of 4D-Var

- We have shown that it is possible to find a low-cost low-rank update for the inexact constraint preconditioner.

Preconditioning Saddle Point Formulation of 4D-Var

- We have shown that it is possible to find a low-cost low-rank update for the inexact constraint preconditioner.
- This update amounts to the two-sided-rank-one (TR1) update proposed by Griewank and Walther (2002).

TR1 update:

- It generalizes the classical symmetric rank-one update.
- It maintains the validity of all previous secant conditions.
- It is invariant with respect to linear transformations

Preconditioning Saddle Point Formulation of 4D-Var

- We have shown that it is possible to find a low-cost low-rank update for the inexact constraint preconditioner.
- This update amounts to the two-sided-rank-one (TR1) update proposed by Griewank and Walther (2002).

TR1 update:

- It generalizes the classical symmetric rank-one update.
- It maintains the validity of all previous secant conditions.
- It is invariant with respect to linear transformations
- It has no least change characterization in terms of any particular matrix norm.

Preconditioning Saddle Point Formulation of 4D-Var

- We have shown that it is possible to find a low-cost low-rank update for the inexact constraint preconditioner.
- This update amounts to the two-sided-rank-one (TR1) update proposed by Griewank and Walther (2002).

TR1 update:

- It generalizes the classical symmetric rank-one update.
- It maintains the validity of all previous secant conditions.
- It is invariant with respect to linear transformations
- It has no least change characterization in terms of any particular matrix norm.
\rightarrow Next slides are dedicated to find the least-Frobenius norm update.

$$
\text { Frobenius norm : }\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}^{2}\right|}
$$

Preconditioning Saddle Point Formulation of 4D-Var

- Remember that we want to find an update such that

$$
\begin{align*}
\Delta \mathbf{B}^{\mathrm{T}} \mathbf{u}_{2} & =\mathbf{r}_{b} \tag{1}\\
\Delta \mathbf{B} \mathbf{u}_{1} & =\mathbf{r}_{c} \tag{2}
\end{align*}
$$

Preconditioning Saddle Point Formulation of 4D-Var

- Remember that we want to find an update such that

$$
\begin{align*}
\Delta \mathbf{B}^{\mathrm{T}} \mathbf{u}_{2} & =\mathbf{r}_{b} \tag{1}\\
\Delta \mathbf{B} \mathbf{u}_{1} & =\mathbf{r}_{c} \tag{2}
\end{align*}
$$

- Any solution $\Delta \mathbf{B}$ satisfying Equation (1) can be written as [Lemma 2.1](Sun 1999)

$$
\Delta \mathbf{B}^{T}=\mathbf{r}_{b} \mathbf{u}_{2}^{\dagger}+\mathbf{S}\left(\mathbf{I}-\mathbf{u}_{2} \mathbf{u}_{2}^{\dagger}\right)
$$

where \dagger denotes the pseudo-inverse and \mathbf{S} is an $(n+m) \times n$ matrix. Inserting this relation into (2) yields

$$
\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{r}_{b}^{\mathrm{T}} \mathbf{u}_{1}+\left(\mathbf{I}-\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{u}_{2}^{\mathrm{T}}\right) \mathbf{S}^{\mathrm{T}} \mathbf{u}_{1}=\mathbf{r}_{c}
$$

Preconditioning Saddle Point Formulation of 4D-Var

- Remember that we want to find an update such that

$$
\begin{align*}
\Delta \mathbf{B}^{\mathrm{T}} \mathbf{u}_{2} & =\mathbf{r}_{b} \tag{1}\\
\Delta \mathbf{B} \mathbf{u}_{1} & =\mathbf{r}_{c} \tag{2}
\end{align*}
$$

- Any solution $\Delta \mathbf{B}$ satisfying Equation (1) can be written as [Lemma 2.1](Sun 1999)

$$
\Delta \mathbf{B}^{T}=\mathbf{r}_{b} \mathbf{u}_{2}^{\dagger}+\mathbf{S}\left(\mathbf{I}-\mathbf{u}_{2} \mathbf{u}_{2}^{\dagger}\right)
$$

where \dagger denotes the pseudo-inverse and \mathbf{S} is an $(n+m) \times n$ matrix. Inserting this relation into (2) yields

$$
\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{r}_{b}^{\mathrm{T}} \mathbf{u}_{1}+\left(\mathbf{I}-\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{u}_{2}^{\mathrm{T}}\right) \mathbf{S}^{\mathrm{T}} \mathbf{u}_{1}=\mathbf{r}_{c}
$$

- If this equation admits one solution, its least Frobenius norm solution,

$$
\min _{\mathbf{S}^{\mathrm{T}} \in \mathbb{R}^{m \times n}}\left\|\left(\mathbf{r}_{c}-\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{r}_{b}^{\mathrm{T}} \mathbf{u}_{1}\right)-\left(\mathbf{I}-\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{u}_{2}^{\mathrm{T}}\right) \mathbf{S}^{\mathrm{T}} \mathbf{u}_{1}\right\|_{F}
$$

can be written as [Lemma 2.3](Sun 1999)

$$
\left(\mathbf{S}^{\mathrm{T}}\right)^{*}=\left(\mathbf{I}-\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{u}_{2}^{\mathrm{T}}\right)^{\dagger}\left(\mathbf{r}_{c}-\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{r}_{b}^{\mathrm{T}} \mathbf{u}_{1}\right) \mathbf{u}_{1}^{\dagger} .
$$

Preconditioning Saddle Point Formulation of 4D-Var

- Substituting the solution for \mathbf{S} into $\Delta \mathbf{B}$ yields that

$$
\Delta \mathbf{B}^{*}=\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{r}_{b}^{\mathrm{T}}+\left(\mathbf{I}-\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{u}_{2}^{\mathrm{T}}\right) \mathbf{r}_{c} \mathbf{u}_{1}^{\dagger}
$$

Preconditioning Saddle Point Formulation of 4D-Var

- Substituting the solution for \mathbf{S} into $\Delta \mathbf{B}$ yields that

$$
\Delta \mathbf{B}^{*}=\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{r}_{b}^{\mathrm{T}}+\left(\mathbf{I}-\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{u}_{2}^{\mathrm{T}}\right) \mathbf{r}_{c} \mathbf{u}_{1}^{\dagger}
$$

- This formula is not invariant with respect to linear transformations.

Preconditioning Saddle Point Formulation of 4D-Var

- Substituting the solution for \mathbf{S} into $\Delta \mathbf{B}$ yields that

$$
\Delta \mathbf{B}^{*}=\mathbf{u}_{2}{ }^{\mathrm{T} \dagger} \mathbf{r}_{b}^{\mathrm{T}}+\left(\mathbf{I}-\mathbf{u}_{2}{ }^{\mathrm{T} \dagger} \mathbf{u}_{2}^{\mathrm{T}}\right) \mathbf{r}_{c} \mathbf{u}_{1}^{\dagger}
$$

- This formula is not invariant with respect to linear transformations.
- We want to find such a formula by solving the following variational problem:

$$
\begin{gathered}
\min \left\|\mathbf{W}_{1}^{-1} \Delta \mathbf{B} \mathbf{W}_{2}^{-1}\right\|_{F} \\
\text { s.t. } \Delta \mathbf{B}^{T} \mathbf{u}_{2}=\mathbf{r}_{b} \\
\Delta \mathbf{B} \mathbf{u}_{1}=\mathbf{r}_{c}
\end{gathered}
$$

where \mathbf{W}_{1} is any symmetric positive definite matrix such that $\mathbf{W}_{1} \mathbf{W}_{1}^{T} \mathbf{u}_{2}=\mathbf{c}$, and \mathbf{W}_{2} is any symmetric positive definite matrix such that $\mathbf{W}_{2}^{T} \mathbf{W}_{2} \mathbf{u}_{1}=\mathbf{b}$. For instance, \mathbf{W}_{1} can be considered as $\mathbf{B A}^{-1} \mathbf{B}^{T}$ and \mathbf{W}_{2} can be considered as \mathbf{A}.

Preconditioning Saddle Point Formulation of 4D-Var

- Substituting the solution for \mathbf{S} into $\Delta \mathbf{B}$ yields that

$$
\Delta \mathbf{B}^{*}=\mathbf{u}_{2}{ }^{\mathrm{T} \dagger} \mathbf{r}_{b}^{\mathrm{T}}+\left(\mathbf{I}-\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{u}_{2}^{\mathrm{T}}\right) \mathbf{r}_{c} \mathbf{u}_{1}^{\dagger}
$$

- This formula is not invariant with respect to linear transformations.
- We want to find such a formula by solving the following variational problem:

$$
\begin{gathered}
\min \left\|\mathbf{W}_{1}^{-1} \Delta \mathbf{B} \mathbf{W}_{2}^{-1}\right\|_{F} \\
\text { s.t. } \Delta \mathbf{B}^{T} \mathbf{u}_{2}=\mathbf{r}_{b} \\
\Delta \mathbf{B} \mathbf{u}_{1}=\mathbf{r}_{c}
\end{gathered}
$$

where \mathbf{W}_{1} is any symmetric positive definite matrix such that $\mathbf{W}_{1} \mathbf{W}_{1}^{T} \mathbf{u}_{2}=\mathbf{c}$, and \mathbf{W}_{2} is any symmetric positive definite matrix such that $\mathbf{W}_{2}^{\top} \mathbf{W}_{2} \mathbf{u}_{1}=\mathbf{b}$. For instance, \mathbf{W}_{1} can be considered as $\mathbf{B A}^{-1} \mathbf{B}^{T}$ and \mathbf{W}_{2} can be considered as \mathbf{A}.

- The solution is given as:

$$
\Delta \mathbf{B}^{*}=\frac{\mathbf{c r}_{b}^{T}}{\mathbf{u}_{2}^{T} \mathbf{c}}+\frac{\mathbf{r}_{c} \mathbf{b}^{T}}{\mathbf{u}_{1}^{T} \mathbf{b}}-\frac{\mathbf{u}_{2}^{T} \mathbf{r}_{c} \mathbf{c b}^{T}}{\mathbf{u}_{2}^{T} \mathbf{c} \mathbf{u}_{1}^{T} \mathbf{b}}
$$

- This formula can be rewritten as

$$
\Delta \mathbf{B}=\left[\begin{array}{lll}
\frac{\mathbf{c}}{\mathbf{u}_{2}^{T}} & \mathbf{r}_{\mathbf{c}} & -\frac{\mathbf{c}}{\mathbf{u}_{2}^{T} \mathbf{c}}
\end{array}\right]\left[\begin{array}{c}
\mathbf{r}_{\mathbf{b}}^{T} \\
\frac{\mathbf{b}^{T}}{\mathbf{u}_{1}^{T} \mathbf{b}} \\
\frac{\mathbf{u}_{2}^{T} \mathbf{r}_{\mathbf{c}}{ }^{T}}{\mathbf{u}_{1}^{T} \mathbf{b}}
\end{array}\right]=\mathbf{\mathbf { W W } ^ { T } ,}
$$

- This formula can be rewritten as

$$
\Delta \mathbf{B}=\left[\begin{array}{lll}
\frac{\mathbf{c}}{\mathbf{u}_{2}^{T} \mathbf{c}} & \mathbf{r}_{\mathbf{c}} & -\frac{\mathbf{c}}{\mathbf{u}_{2}^{T} \mathbf{c}}
\end{array}\right]\left[\begin{array}{c}
\mathbf{r}_{\mathbf{b}}^{T} \\
\frac{\mathbf{b}^{T}}{\mathbf{u}_{1}^{T} \mathbf{b}} \\
\frac{\mathbf{u}_{2}^{T} \mathbf{r}^{T} \mathbf{b}^{T}}{\mathbf{u}_{1}^{T} \mathbf{b}}
\end{array}\right]=\mathbf{V \mathbf { W } ^ { T } ,}
$$

- The preconditioner can be updated by using the following formula

$$
\mathcal{P}_{1}=\mathcal{P}_{0}+\left(\begin{array}{cc}
\mathbf{0} & \mathbf{W} \mathbf{V}^{\top} \\
\mathbf{V} \mathbf{W}^{\top} & \mathbf{0}
\end{array}\right)=\mathcal{P}_{0}+\underbrace{\left(\begin{array}{cc}
\mathbf{0} & \mathbf{W} \\
\mathbf{V} & \mathbf{0}
\end{array}\right)}_{\mathbf{F}} \underbrace{\left(\begin{array}{cc}
\mathbf{W}^{\top} & \mathbf{0} \\
\mathbf{0} & \mathbf{V}^{\top}
\end{array}\right)}_{\mathbf{G}}
$$

- The inverse formula is then given by

$$
\mathcal{P}_{F}^{-1}=\mathcal{P}_{0}^{-1}-\mathcal{P}_{0}^{-1} \mathbf{F}\left(\mathbf{I}_{6}+\mathbf{G} \mathcal{P}_{0}^{-1} \mathbf{F}\right)^{-1} \mathbf{G} \mathcal{P}_{0}^{-1}
$$

where \mathbf{F} is an $(2 n+m)$-by- 6 matrix and \mathbf{G} is an 6 -by- $(2 n+m)$ matrix.

Numerical Results

Implementation platform

- We used the Object Oriented Prediction System (OOPS) developed by ECMWF
- OOPS consists of simplified models of a real-system

The model

- It is a two-layer quasi-geostraphic model with 1600 grid-points

Implementation details

- There are 100 observations of stream function every 3 hours, 100 wind observations plus 100 wind-speed observations every 6 hours
- The error covariance matrices are assumed to be horizontally isotropic and homogeneous, with Gaussian spatial structure
- The analysis window is 24 hours, and is divided into 8 subwindows
- 3 outer loops with 10 inner loops each are performed

Methods

(1) Standard weak-constrained 4D-Var formulation
\rightarrow Solution method is preconditioned conjugate-gradients

Methods

(1) Standard weak-constrained 4D-Var formulation
\rightarrow Solution method is preconditioned conjugate-gradients
(2) Saddle point formulation with an updated inexact constraint preconditioner
\rightarrow Solution method is GMRES
\rightarrow The initial preconditioner is chosen as

$$
\mathcal{P}_{0}=\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \widetilde{\mathbf{L}} \\
\mathbf{0} & \mathbf{R} & \mathbf{0} \\
\widetilde{\mathbf{L}}^{\mathrm{T}} & \mathbf{0} & \mathbf{0}
\end{array}\right) \quad \text { with } \quad \tilde{\mathbf{L}}=\left(\begin{array}{cccc}
\mathbf{I} & & & \\
-\mathbf{I} & \mathbf{I} & & \\
& \ddots & \ddots & \\
& & -\mathbf{I} & \mathbf{I}
\end{array}\right)
$$

Methods

(1) Standard weak-constrained 4D-Var formulation
\rightarrow Solution method is preconditioned conjugate-gradients
(2) Saddle point formulation with an updated inexact constraint preconditioner
\rightarrow Solution method is GMRES
\rightarrow The initial preconditioner is chosen as

$$
\begin{gathered}
\mathcal{P}_{0}=\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \widetilde{\mathbf{L}} \\
\mathbf{0} & \mathbf{R} & \mathbf{0} \\
\tilde{\mathbf{L}}^{\mathrm{T}} & \mathbf{0} & \mathbf{0}
\end{array}\right) \quad \text { with } \quad \tilde{\mathbf{L}}=\left(\begin{array}{ccc}
\mathbf{I} & & \\
-\mathbf{I} & \mathbf{I} & \\
& \ddots & \ddots \\
& & -\mathbf{I} \\
\mathbf{I}
\end{array}\right) \\
\mathcal{P}_{0}^{-1}=\left(\begin{array}{ccc}
\mathbf{0} & \mathbf{0} & \tilde{\mathbf{L}}^{-\mathrm{T}} \\
\mathbf{0} & \mathbf{R}^{-1} & \mathbf{0} \\
\tilde{\mathbf{L}}^{-1} & \mathbf{0} & -\widetilde{\mathbf{L}}^{-1} \mathbf{D} \tilde{\mathbf{L}}^{-\mathrm{T}}
\end{array}\right) \quad \text { and } \quad \tilde{\mathbf{L}}^{-1}=\left(\begin{array}{cccc}
\mathbf{I} & \\
\mathbf{I} & \mathbf{I} & \\
\vdots & \ddots & \ddots & \\
\mathbf{I} & \cdots & \mathbf{I} & \mathbf{I}
\end{array}\right) .
\end{gathered}
$$

Second-level preconditioners:
(1) \mathcal{T}_{k} : The preconditioner obtained by using the TR1 update
(2) \mathcal{F}_{k} : The preconditioner obtained by using the least-Frobenius update

The performance of the second level preconditioners

- Second-level preconditioners obtained by using updates may accelerate the convergence
- When all pairs are used the least-Frobenius update is more stable.

Overall performance compared with the standard 4DVar formulation

Figure: Nonlinear cost function values along iterations

Figure: Nonlinear cost function values along sequential subwindow integrations

- At each iteration the standard 4DVar formulation requires one application of \mathbf{L}^{-1}, followed by one application of $\mathbf{L}^{-\mathrm{T}}$ (16 sequential subwindow integrations)
- At each iteration of saddle point formulation require one subwindow integration (provided that \mathbf{L}^{-1} and $\mathbf{L}^{-\mathrm{T}}$ are applied simultaneously)

Conclusions

- The saddle point formulation of weak-constraint 4D-Var allows parallelisation in the time dimension.
- Finding an effective preconditioner is a key issue in solving the saddle point systems.
- The inexact constraint preconditioner can be used to precondition the saddle point formulation of 4D-Var.
- When solving a sequence of saddle point systems, a low-rank low-cost update formulas can be found to further improve preconditioning.
- The preconditioned GMRES algorithm for saddle point formulation is competitive with the existing algorithms and has the potential to allow 4D-Var to remain computationally viable on next-generation computer architectures.

Thank you for your attention!

