Preconditioning Saddle-Point Formulation of the variational data assimilation

M. Fisher¹, S. Gratton^{2,3}, S. Gürol³

¹ECMWF, Reading, UK ²ENSEEIHT, Toulouse, France ³CERFACS, Toulouse, France

Colloque National sur l'Assimilation de données, Toulouse, France

1 December 2014

From Mike's presentation we have seen that:

- Incremental 4D-Var suffers from parallelization in the time dimension.
- Solution: Saddle-point approach

・ロト ・回ト ・ヨト ・ヨ

From Mike's presentation we have seen that:

• Incremental 4D-Var suffers from parallelization in the time dimension.

• Solution: Saddle-point approach

What will we discuss in this talk?

- Can we maintain good convergence properties of 4D-Var?
- Can we further accelerate the convergence rate?

Preconditioning of saddle point approach

イロン イロン イヨン イヨ

<u>Outline</u>

- Saddle point approach of 4D-Var
- Preconditioning of saddle point formulation
- Numerical results
- Conclusions

• Let us consider weak-constraint 4D-Var as a constrained problem and write the Lagrangian function. Then the stationary point of \mathcal{L} satisfies the system of equations that can be written in a matrix form as:

$$egin{pmatrix} \mathsf{D} & \mathsf{0} & \mathsf{L} \ \mathsf{0} & \mathsf{R} & \mathsf{H} \ \mathsf{L}^{ ext{T}} & \mathsf{H}^{ ext{T}} & \mathsf{0} \end{pmatrix} egin{pmatrix} \lambda \ \mu \ \delta \mathsf{x} \end{pmatrix} = egin{pmatrix} \mathsf{b} \ \mathsf{d} \ \mathsf{d} \ \mathsf{d} \end{pmatrix}$$

• This system is called the saddle-point formulation of 4D-Var.

•
$$\mathbf{L} = \begin{pmatrix} I & & & & \\ -M_1 & I & & & \\ & -M_2 & I & & \\ & & \ddots & \ddots & \\ & & & -M_N & I \end{pmatrix}$$
 is an n-by-n matrix.

- $\bullet \ H = \textit{diag}(H_0, H_1, \ldots, H_N) \text{ is an n-by-m matrix}.$
- $\mathbf{D} = diag(\mathbf{B}, \mathbf{Q}_1, \dots, \mathbf{Q}_N)$ is an n-by-n matrix.
- $\mathbf{R} = diag(\mathbf{R_0}, \mathbf{R_1}, \dots, \mathbf{R_N})$ is an m-by-m matrix.

• In matrix form:

$$\underbrace{\begin{pmatrix} \textbf{D} & \textbf{0} & \textbf{L} \\ \textbf{0} & \textbf{R} & \textbf{H} \\ \textbf{L}^{\mathrm{T}} & \textbf{H}^{\mathrm{T}} & \textbf{0} \end{pmatrix}}_{\mathcal{A}} \begin{pmatrix} \boldsymbol{\lambda} \\ \boldsymbol{\mu} \\ \delta \textbf{x} \end{pmatrix} = \begin{pmatrix} \textbf{b} \\ \textbf{d} \\ \textbf{0} \end{pmatrix}$$

where A is a (2n + m)-by-(2n + m) indefinite symmetric matrix.

• In matrix form:

$$\underbrace{\begin{pmatrix} \textbf{D} & \textbf{0} & \textbf{L} \\ \textbf{0} & \textbf{R} & \textbf{H} \\ \textbf{L}^{\mathrm{T}} & \textbf{H}^{\mathrm{T}} & \textbf{0} \end{pmatrix}}_{\mathcal{A}} \begin{pmatrix} \boldsymbol{\lambda} \\ \boldsymbol{\mu} \\ \delta \textbf{x} \end{pmatrix} = \begin{pmatrix} \textbf{b} \\ \textbf{d} \\ \textbf{0} \end{pmatrix}$$

where A is a (2n + m)-by-(2n + m) indefinite symmetric matrix.

• The solution of this problem is a saddle point

・ロト ・回ト ・ヨト ・

• In matrix form:

$$\underbrace{\begin{pmatrix} \textbf{D} & \textbf{0} & \textbf{L} \\ \textbf{0} & \textbf{R} & \textbf{H} \\ \textbf{L}^{\mathrm{T}} & \textbf{H}^{\mathrm{T}} & \textbf{0} \end{pmatrix}}_{\mathcal{A}} \begin{pmatrix} \boldsymbol{\lambda} \\ \boldsymbol{\mu} \\ \delta \textbf{x} \end{pmatrix} = \begin{pmatrix} \textbf{b} \\ \textbf{d} \\ \textbf{0} \end{pmatrix}$$

where A is a (2n + m)-by-(2n + m) indefinite symmetric matrix.

• The solution of this problem is a saddle point

 \rightarrow This approach is time-parallel.

・ロト ・回ト ・ヨト ・

• In matrix form:

$$\underbrace{\begin{pmatrix} \textbf{D} & \textbf{0} & \textbf{L} \\ \textbf{0} & \textbf{R} & \textbf{H} \\ \textbf{L}^{\mathrm{T}} & \textbf{H}^{\mathrm{T}} & \textbf{0} \end{pmatrix}}_{\mathcal{A}} \begin{pmatrix} \boldsymbol{\lambda} \\ \boldsymbol{\mu} \\ \delta \textbf{x} \end{pmatrix} = \begin{pmatrix} \textbf{b} \\ \textbf{d} \\ \textbf{0} \end{pmatrix}$$

where A is a (2n + m)-by-(2n + m) indefinite symmetric matrix.

• The solution of this problem is a saddle point

- \rightarrow This approach is time-parallel.
- \rightarrow Solution algorithm: GMRES method with a preconditioner.

<u>Outline</u>

- Saddle point approach of 4D-Var
- Preconditioning of saddle point formulation
- Numerical results
- Conclusions

• A preconditioner attempts to improve the spectral properties of the system matrix $\ensuremath{\mathcal{A}}.$

・ロト ・回ト ・ヨト ・ヨト

- A preconditioner attempts to improve the spectral properties of the system matrix $\ensuremath{\mathcal{A}}.$
- When using GMRES, a clustered spectrum often results in rapid convergence, especially the departure from normality of the preconditioned matrix is not too high (Benzi et. al 2005).

- A preconditioner attempts to improve the spectral properties of the system matrix $\ensuremath{\mathcal{A}}.$
- When using GMRES, a clustered spectrum often results in rapid convergence, especially the departure from normality of the preconditioned matrix is not too high (Benzi et. al 2005).

 \rightarrow When solving an indefinite saddle point system with GMRES, it is crucial to find an efficient preconditioner.

- A preconditioner attempts to improve the spectral properties of the system matrix $\ensuremath{\mathcal{A}}.$
- When using GMRES, a clustered spectrum often results in rapid convergence, especially the departure from normality of the preconditioned matrix is not too high (Benzi et. al 2005).

 \rightarrow When solving an indefinite saddle point system with GMRES, it is crucial to find an efficient preconditioner.

Efficient preconditioner \mathcal{P}

- is an approximation to ${\cal A}$
- the cost of constructing and applying the preconditioner should be less than the gain in computational cost
- exploits the block structure of the problem for saddle point systems

- A preconditioner attempts to improve the spectral properties of the system matrix $\ensuremath{\mathcal{A}}.$
- When using GMRES, a clustered spectrum often results in rapid convergence, especially the departure from normality of the preconditioned matrix is not too high (Benzi et. al 2005).

 \rightarrow When solving an indefinite saddle point system with GMRES, it is crucial to find an efficient preconditioner.

Efficient preconditioner \mathcal{P}

- is an approximation to ${\cal A}$
- the cost of constructing and applying the preconditioner should be less than the gain in computational cost

• exploits the block structure of the problem for saddle point systems <u>Implementation</u>

 $\bullet\,$ Solving a system $\mathcal{A}\,u=f$ with a preconditioner \mathcal{P} requires solving

$$(\mathcal{P}^{-1}\mathcal{A})\mathbf{u} = \mathcal{P}^{-1}\mathbf{f}$$

<ロ> (日) (日) (日) (日) (日)

Preconditioning Saddle Point Systems

$$\mathcal{A} = \begin{pmatrix} \mathsf{D} & \mathsf{0} & \mathsf{L} \\ \mathsf{0} & \mathsf{R} & \mathsf{H} \\ \mathsf{L}^{\mathrm{T}} & \mathsf{H}^{\mathrm{T}} & \mathsf{0} \end{pmatrix} = \begin{pmatrix} \mathsf{A} & \mathsf{B}^{\mathrm{T}} \\ \mathsf{B} & \mathsf{0} \end{pmatrix}$$

• Block preconditioners (Kuznetsov (1995), Murphy, Golub and Wathen (2000), Bramble and Pasciak (1988))

$$\mathcal{P} = \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & -\mathbf{S} \end{pmatrix}, \quad \mathcal{P} = \begin{pmatrix} \mathbf{A} & \mathbf{B}^T \\ \mathbf{0} & \mathbf{S} \end{pmatrix}$$

where $\mathbf{S} = \mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\mathsf{T}}$ is the Schur complement (the unpreconditioned 4D-Var Hessian).

 Constraint preconditioners (Bergamaschi et. al (2004), Gould and Wathen (2000), Benzi et al. 2005)

$$\mathcal{P} = \begin{pmatrix} \mathbf{\tilde{A}} & \mathbf{B}^T \\ \mathbf{B} & \mathbf{0} \end{pmatrix}$$

It is assumed that solving the system involving ${\cal P}$ is significantly easier than solving the original system.

 Hermitian and skew Hermitian splitting of A, stationary iterative methods, multilevel methods, ... (Benzi et al (2005))

$$\mathcal{A} = \begin{pmatrix} \mathsf{D} & \mathsf{0} & \mathsf{L} \\ \mathsf{0} & \mathsf{R} & \mathsf{H} \\ \mathsf{L}^{\mathrm{T}} & \mathsf{H}^{\mathrm{T}} & \mathsf{0} \end{pmatrix} = \begin{pmatrix} \mathsf{A} & \mathsf{B}^{\mathrm{T}} \\ \mathsf{B} & \mathsf{0} \end{pmatrix}$$

• The inexact constraint preconditioner proposed by (Bergamaschi et. al. 2005) is promising for our application. The preconditioner can be chosen as:

$$\mathcal{P} = \begin{pmatrix} \mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\ \widetilde{\mathbf{B}} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{D} & \mathbf{0} & \widetilde{\mathbf{L}} \\ \mathbf{0} & \mathbf{R} & \mathbf{0} \\ \widetilde{\mathbf{L}}^{\mathrm{T}} & \mathbf{0} & \mathbf{0} \end{pmatrix}$$

where

- \widetilde{L} is an approximation to the matrix L
- ▶ $\widetilde{\mathbf{B}} = [\widetilde{\mathbf{L}}^{\mathrm{T}} \ \mathbf{0}]$ is a full row rank approximation of the matrix $\mathbf{B} \in \mathbb{R}^{n \times (m+n)}$

$$\underbrace{\begin{pmatrix} \mathsf{D} & \mathsf{0} & \mathsf{L} \\ \mathsf{0} & \mathsf{R} & \mathsf{H} \\ \mathsf{L}^{\mathrm{T}} & \mathsf{H}^{\mathrm{T}} & \mathsf{0} \end{pmatrix}}_{\mathcal{A}_{k}} \underbrace{\begin{pmatrix} \lambda \\ \mu \\ \delta x \end{pmatrix}}_{\mathsf{u}} = \underbrace{\begin{pmatrix} \mathsf{b} \\ \mathsf{d} \\ \mathsf{0} \end{pmatrix}}_{\mathsf{f}_{k}}$$

When solving a sequence of saddle point systems, can we further improve the preconditioning for the outer loops k > 1?

Can we find low-rank updates for the inexact constraint preconditioner that approximates \mathcal{A}^{-1} or its effect on a vector?

<ロ> (日) (日) (日) (日) (日)

• For k = 1, we have the inexact constraint preconditioner:

$$\mathcal{P} = \begin{pmatrix} \mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\ \widetilde{\mathbf{B}} & \mathbf{0} \end{pmatrix}$$

• For k = 1, we have the inexact constraint preconditioner:

$$\mathcal{P} = \begin{pmatrix} \mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\ \widetilde{\mathbf{B}} & \mathbf{0} \end{pmatrix}$$

For k > 1, we want to find a low-rank update ΔB = B - B̃ and use the updated preconditioner:

$$\mathcal{P} = \begin{pmatrix} \mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\ \widetilde{\mathbf{B}} & \mathbf{0} \end{pmatrix} + \begin{pmatrix} \mathbf{0} & \Delta \mathbf{B}^{\mathrm{T}} \\ \Delta \mathbf{B} & \mathbf{0} \end{pmatrix}$$

• For k = 1, we have the inexact constraint preconditioner:

$$\mathcal{P} = \begin{pmatrix} \mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\ \widetilde{\mathbf{B}} & \mathbf{0} \end{pmatrix}$$

For k > 1, we want to find a low-rank update ΔB = B - B̃ and use the updated preconditioner:

$$\mathcal{P} = \begin{pmatrix} \mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\ \widetilde{\mathbf{B}} & \mathbf{0} \end{pmatrix} + \begin{pmatrix} \mathbf{0} & \Delta \mathbf{B}^{\mathrm{T}} \\ \Delta \mathbf{B} & \mathbf{0} \end{pmatrix}$$

 \rightarrow GMRES performs matrix-vector products with ${\cal A}$:

$$\underbrace{\begin{pmatrix} \mathbf{A} & \mathbf{B}^{\mathrm{T}} \\ \mathbf{B} & \mathbf{0} \end{pmatrix}}_{\mathcal{A}_{k}} \underbrace{\begin{pmatrix} \mathbf{u}_{1} \\ \mathbf{u}_{2} \end{pmatrix}}_{\mathbf{u}_{j}^{(k)}} = \underbrace{\begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}}_{\mathbf{f}_{j}^{(k)}}$$

• For k = 1, we have the inexact constraint preconditioner:

$$\mathcal{P} = \begin{pmatrix} \mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\ \widetilde{\mathbf{B}} & \mathbf{0} \end{pmatrix}$$

For k > 1, we want to find a low-rank update ΔB = B - B̃ and use the updated preconditioner:

$$\mathcal{P} = \begin{pmatrix} \mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\ \widetilde{\mathbf{B}} & \mathbf{0} \end{pmatrix} + \begin{pmatrix} \mathbf{0} & \Delta \mathbf{B}^{\mathrm{T}} \\ \Delta \mathbf{B} & \mathbf{0} \end{pmatrix}$$

 \rightarrow GMRES performs matrix-vector products with $\mathcal A$:

$$\underbrace{\begin{pmatrix} \mathbf{A} & \mathbf{B}^{\mathrm{T}} \\ \mathbf{B} & \mathbf{0} \end{pmatrix}}_{\mathcal{A}_{k}} \underbrace{\begin{pmatrix} \mathbf{u}_{1} \\ \mathbf{u}_{2} \end{pmatrix}}_{\mathbf{u}_{j}^{(k)}} = \underbrace{\begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}}_{\mathbf{f}_{j}^{(k)}}$$

 \rightarrow We can use the pairs $(\mathbf{u}_{i}^{(k)}, \mathbf{f}_{i}^{(k)})$ to find an update $\Delta \mathbf{B}$.

$$\begin{pmatrix} \mathbf{A} & \mathbf{B}^{\mathrm{T}} \\ \mathbf{B} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u}_{1} \\ \mathbf{u}_{2} \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \implies \begin{pmatrix} \mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\ \widetilde{\mathbf{B}} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u}_{1} \\ \mathbf{u}_{2} \end{pmatrix} + \begin{pmatrix} \mathbf{0} & \Delta \mathbf{B}^{\mathrm{T}} \\ \Delta \mathbf{B} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u}_{1} \\ \mathbf{u}_{2} \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

$$\implies \begin{pmatrix} \mathbf{A}\mathbf{u}_{1} + \widetilde{\mathbf{B}}^{\mathrm{T}}\mathbf{u}_{2} \\ \widetilde{\mathbf{B}}\mathbf{u}_{1} \end{pmatrix} + \begin{pmatrix} \Delta \mathbf{B}^{\mathrm{T}}\mathbf{u}_{2} \\ \Delta \mathbf{B}\mathbf{u}_{1} \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

$$\implies \begin{pmatrix} \Delta \mathbf{B}^{\mathrm{T}}\mathbf{u}_{2} \\ \Delta \mathbf{B}\mathbf{u}_{1} \end{pmatrix} = \begin{pmatrix} \mathbf{b} - \mathbf{A}\mathbf{u}_{1} - \widetilde{\mathbf{B}}^{\mathrm{T}}\mathbf{u}_{2} \\ \mathbf{c} - \widetilde{\mathbf{B}}\mathbf{u}_{1} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{A} & \mathbf{B}^{\mathrm{T}} \\ \mathbf{B} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u}_{1} \\ \mathbf{u}_{2} \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} \mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\ \widetilde{\mathbf{B}} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u}_{1} \\ \mathbf{u}_{2} \end{pmatrix} + \begin{pmatrix} \mathbf{0} & \Delta \mathbf{B}^{\mathrm{T}} \\ \Delta \mathbf{B} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u}_{1} \\ \mathbf{u}_{2} \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

$$\Rightarrow \quad \begin{pmatrix} \mathbf{A}\mathbf{u}_{1} + \widetilde{\mathbf{B}}^{\mathrm{T}}\mathbf{u}_{2} \\ \widetilde{\mathbf{B}}\mathbf{u}_{1} \end{pmatrix} + \begin{pmatrix} \Delta \mathbf{B}^{\mathrm{T}}\mathbf{u}_{2} \\ \Delta \mathbf{B}\mathbf{u}_{1} \end{pmatrix} = \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

$$\Rightarrow \quad \begin{pmatrix} \Delta \mathbf{B}^{\mathrm{T}}\mathbf{u}_{2} \\ \Delta \mathbf{B}\mathbf{u}_{1} \end{pmatrix} = \begin{pmatrix} \mathbf{b} - \mathbf{A}\mathbf{u}_{1} - \widetilde{\mathbf{B}}^{\mathrm{T}}\mathbf{u}_{2} \\ \mathbf{c} - \widetilde{\mathbf{B}}\mathbf{u}_{1} \end{pmatrix}$$

• Let's define the vectors **r**_b and **r**_c as

$$\begin{aligned} \mathbf{r}_b &= \mathbf{b} - \mathbf{A}\mathbf{u}_1 - \widetilde{\mathbf{B}}^{\mathrm{T}}\mathbf{u}_2 \\ \mathbf{r}_c &= \mathbf{c} - \widetilde{\mathbf{B}}\mathbf{u}_1 \end{aligned}$$

• Then we have

$$\Delta \mathbf{B}^{\mathrm{T}} \mathbf{u}_{2} = \mathbf{r}_{b} \tag{1}$$
$$\Delta \mathbf{B} \mathbf{u}_{1} = \mathbf{r}_{c} \tag{2}$$

 \rightarrow We want to find an update ΔB satisfying these equations.

S. Gürol (CERFACS)

• A rank-1 update to $\Delta \boldsymbol{B}$ can be given by

$$\Delta \mathbf{B} = \alpha \mathbf{v} \mathbf{w}^{\mathrm{T}}$$

where $\mathbf{v} \in \mathbb{R}^n$ and $\mathbf{w} \in \mathbb{R}^{n+m}$.

・ロト ・回ト ・ヨト ・ヨト

• A rank-1 update to $\Delta \boldsymbol{B}$ can be given by

$$\Delta \mathbf{B} = \alpha \mathbf{v} \mathbf{w}^{\mathrm{T}}$$

where $\mathbf{v} \in \mathbb{R}^n$ and $\mathbf{w} \in \mathbb{R}^{n+m}$.

• Substituting this relation into equations (1) and (2), we get

$$\Delta \mathbf{B}^{\mathrm{T}} \mathbf{u}_{2} = \mathbf{r}_{b} \Leftrightarrow \alpha \mathbf{w} \mathbf{v}^{\mathrm{T}} \mathbf{u}_{2} = \mathbf{r}_{b}$$
$$\Delta \mathbf{B} \mathbf{u}_{1} = \mathbf{r}_{c} \Leftrightarrow \alpha \mathbf{v} \mathbf{w}^{\mathrm{T}} \mathbf{u}_{1} = \mathbf{r}_{c}$$

from which we obtain that

$$\mathbf{w} = \mathbf{r}_b / \alpha \mathbf{v}^{\mathrm{T}} \mathbf{u}_2$$
$$\mathbf{v} = \mathbf{r}_c / \alpha \mathbf{w}^{\mathrm{T}} \mathbf{u}_1$$

• A rank-1 update to $\Delta \boldsymbol{B}$ can be given by

$$\Delta \mathbf{B} = \alpha \mathbf{v} \mathbf{w}^{\mathrm{T}}$$

where $\mathbf{v} \in \mathbb{R}^n$ and $\mathbf{w} \in \mathbb{R}^{n+m}$.

• Substituting this relation into equations (1) and (2), we get

$$\Delta \mathbf{B}^{\mathrm{T}} \mathbf{u}_{2} = \mathbf{r}_{b} \Leftrightarrow \alpha \mathbf{w} \mathbf{v}^{\mathrm{T}} \mathbf{u}_{2} = \mathbf{r}_{b}$$
$$\Delta \mathbf{B} \mathbf{u}_{1} = \mathbf{r}_{c} \Leftrightarrow \alpha \mathbf{v} \mathbf{w}^{\mathrm{T}} \mathbf{u}_{1} = \mathbf{r}_{c}$$

from which we obtain that

$$\mathbf{w} = \mathbf{r}_b / \alpha \mathbf{v}^{\mathrm{T}} \mathbf{u}_2$$
$$\mathbf{v} = \mathbf{r}_c / \alpha \mathbf{w}^{\mathrm{T}} \mathbf{u}_1$$

With the choice of

$$\mathbf{w} = \mathbf{r}_b$$
 and $\mathbf{v} = \mathbf{r}_c$

we can show that $\boldsymbol{\alpha}$ is compatible and given as

$$\alpha = 1/\mathbf{v}^{\mathrm{T}}\mathbf{u}_2 = 1/\mathbf{w}^{\mathrm{T}}\mathbf{u}_1$$

S. Gürol (CERFACS)

A D > A P > A B > A

 \bullet As a result, an inexact constraint preconditioner ${\cal P}$ can be updated from

$$\mathcal{P}_{j+1} = \mathcal{P}_j + \begin{pmatrix} \mathbf{0} & \Delta \mathbf{B}^T \\ \Delta \mathbf{B} & \mathbf{0} \end{pmatrix} = \mathcal{P}_j + \begin{pmatrix} \mathbf{0} & \alpha \mathbf{w} \mathbf{v}^T \\ \alpha \mathbf{v} \mathbf{w}^T & \mathbf{0} \end{pmatrix},$$

where $\mathbf{w} = \mathbf{r}_b$, $\mathbf{v} = \mathbf{r}_c$ and $\alpha = 1/\mathbf{v}^{\mathrm{T}}\mathbf{u}_2$.

 \bullet As a result, an inexact constraint preconditioner ${\cal P}$ can be updated from

$$\mathcal{P}_{j+1} = \mathcal{P}_j + \begin{pmatrix} \mathbf{0} & \Delta \mathbf{B}^T \\ \Delta \mathbf{B} & \mathbf{0} \end{pmatrix} = \mathcal{P}_j + \begin{pmatrix} \mathbf{0} & \alpha \mathbf{w} \mathbf{v}^T \\ \alpha \mathbf{v} \mathbf{w}^T & \mathbf{0} \end{pmatrix},$$

where $\mathbf{w} = \mathbf{r}_b$, $\mathbf{v} = \mathbf{r}_c$ and $\alpha = 1/\mathbf{v}^{\mathrm{T}}\mathbf{u}_2$.

• We can rewrite this formula as

$$\mathcal{P}_{j+1} = \mathcal{P}_j + \underbrace{\begin{pmatrix} \mathbf{0} & \mathbf{w} \\ \mathbf{v} & \mathbf{0} \end{pmatrix}}_{\mathbf{F}} \underbrace{\begin{pmatrix} \alpha \mathbf{w}^T & \mathbf{0} \\ \mathbf{0} & \alpha \mathbf{v}^T \end{pmatrix}}_{\mathbf{G}}$$

where **F** is an (2n + m)-by-2 matrix and **G** is an 2-by-(2n + m) matrix.

 \bullet As a result, an inexact constraint preconditioner ${\cal P}$ can be updated from

$$\mathcal{P}_{j+1} = \mathcal{P}_j + \begin{pmatrix} \mathbf{0} & \Delta \mathbf{B}^T \\ \Delta \mathbf{B} & \mathbf{0} \end{pmatrix} = \mathcal{P}_j + \begin{pmatrix} \mathbf{0} & \alpha \mathbf{w} \mathbf{v}^T \\ \alpha \mathbf{v} \mathbf{w}^T & \mathbf{0} \end{pmatrix},$$

where $\mathbf{w} = \mathbf{r}_b$, $\mathbf{v} = \mathbf{r}_c$ and $\alpha = 1/\mathbf{v}^{\mathrm{T}}\mathbf{u}_2$.

• We can rewrite this formula as

$$\mathcal{P}_{j+1} = \mathcal{P}_j + \underbrace{\begin{pmatrix} \mathbf{0} & \mathbf{w} \\ \mathbf{v} & \mathbf{0} \end{pmatrix}}_{\mathbf{F}} \underbrace{\begin{pmatrix} \alpha \mathbf{w}^T & \mathbf{0} \\ \mathbf{0} & \alpha \mathbf{v}^T \end{pmatrix}}_{\mathbf{G}}$$

where **F** is an (2n + m)-by-2 matrix and **G** is an 2-by-(2n + m) matrix.

• Using the Sherman-Morrison-Woodbury formula on this equation gives the inverse update as

$$\mathcal{P}_{j+1}^{-1} = \mathcal{P}_j^{-1} - \mathcal{P}_j^{-1} \boldsymbol{\mathsf{F}} (\boldsymbol{\mathsf{I}}_2 + \boldsymbol{\mathsf{G}} \mathcal{P}_j^{-1} \boldsymbol{\mathsf{F}})^{-1} \boldsymbol{\mathsf{G}} \mathcal{P}_j^{-1}$$

イロト 不得下 イヨト イヨト

• We have shown that it is possible to find a low-cost low-rank update for the inexact constraint preconditioner.

- We have shown that it is possible to find a low-cost low-rank update for the inexact constraint preconditioner.
- This update amounts to the two-sided-rank-one (TR1) update proposed by Griewank and Walther (2002).

TR1 update:

- It generalizes the classical symmetric rank-one update.
- It maintains the validity of all previous secant conditions.
- It is invariant with respect to linear transformations

- We have shown that it is possible to find a low-cost low-rank update for the inexact constraint preconditioner.
- This update amounts to the two-sided-rank-one (TR1) update proposed by Griewank and Walther (2002).

TR1 update:

- It generalizes the classical symmetric rank-one update.
- It maintains the validity of all previous secant conditions.
- It is invariant with respect to linear transformations
- It has no least change characterization in terms of any particular matrix norm.

- We have shown that it is possible to find a low-cost low-rank update for the inexact constraint preconditioner.
- This update amounts to the two-sided-rank-one (TR1) update proposed by Griewank and Walther (2002).

TR1 update:

- It generalizes the classical symmetric rank-one update.
- It maintains the validity of all previous secant conditions.
- It is invariant with respect to linear transformations
- It has no least change characterization in terms of any particular matrix norm.
- \rightarrow Next slides are dedicated to find the least-Frobenius norm update.

Frobenius norm :
$$\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}^2|}$$

• Remember that we want to find an update such that

$$\Delta \mathbf{B}^{\mathrm{T}} \mathbf{u}_2 = \mathbf{r}_b \tag{1}$$

$$\Delta \mathbf{B} \, \mathbf{u}_1 = \mathbf{r}_c \tag{2}$$

・ロト ・回ト ・ヨト ・ヨト

• Remember that we want to find an update such that

$$\Delta \mathbf{B}^{\mathrm{T}} \mathbf{u}_{2} = \mathbf{r}_{b} \tag{1}$$

$$\Delta \mathbf{B} \, \mathbf{u}_1 = \mathbf{r}_c \tag{2}$$

イロト イヨト イヨト イヨト

• Any solution ΔB satisfying Equation (1) can be written as [Lemma 2.1](Sun 1999)

$$\Delta \mathbf{B}^{\mathrm{T}} = \mathbf{r}_{b} \mathbf{u}_{2}^{\dagger} + \mathbf{S} (\mathbf{I} - \mathbf{u}_{2} \mathbf{u}_{2}^{\dagger}),$$

where \dagger denotes the pseudo-inverse and **S** is an $(n + m) \times n$ matrix. Inserting this relation into (2) yields

$$\mathbf{u}_{2}^{\mathrm{T}\dagger}\mathbf{r}_{b}^{\mathrm{T}}\mathbf{u}_{1} + (\mathbf{I} - \mathbf{u}_{2}^{\mathrm{T}\dagger}\mathbf{u}_{2}^{\mathrm{T}})\mathbf{S}^{\mathrm{T}}\mathbf{u}_{1} = \mathbf{r}_{c}.$$

• Remember that we want to find an update such that

$$\Delta \mathbf{B}^{\mathrm{T}} \mathbf{u}_{2} = \mathbf{r}_{b} \tag{1}$$

$$\Delta \mathbf{B} \, \mathbf{u}_1 = \mathbf{r}_c \tag{2}$$

• Any solution ΔB satisfying Equation (1) can be written as [Lemma 2.1](Sun 1999)

$$\Delta \mathbf{B}^{\mathrm{T}} = \mathbf{r}_{b} \mathbf{u}_{2}^{\dagger} + \mathbf{S}(\mathbf{I} - \mathbf{u}_{2}\mathbf{u}_{2}^{\dagger}),$$

where \dagger denotes the pseudo-inverse and **S** is an $(n + m) \times n$ matrix. Inserting this relation into (2) yields

$$\boldsymbol{u}_{2}{}^{\mathrm{T}\dagger}\boldsymbol{r}_{b}{}^{\mathrm{T}}\boldsymbol{u}_{1}+(\boldsymbol{I}-\boldsymbol{u}_{2}{}^{\mathrm{T}\dagger}\boldsymbol{u}_{2}{}^{\mathrm{T}})\boldsymbol{S}^{\mathrm{T}}\boldsymbol{u}_{1}=\boldsymbol{r}_{c}.$$

• If this equation admits one solution, its least Frobenius norm solution,

$$\min_{\mathbf{S}^{\mathrm{T}} \in \mathbb{R}^{m \times n}} \| (\mathbf{r}_{c} - \mathbf{u}_{2}^{\mathrm{T}\dagger} \mathbf{r}_{b}^{\mathrm{T}} \mathbf{u}_{1}) - (\mathbf{I} - \mathbf{u}_{2}^{\mathrm{T}\dagger} \mathbf{u}_{2}^{\mathrm{T}}) \mathbf{S}^{\mathrm{T}} \mathbf{u}_{1} \|_{F_{2}}$$

can be written as [Lemma 2.3](Sun 1999)

$$(\mathbf{S}^{\mathrm{T}})^* = (\mathbf{I} - \mathbf{u}_2^{\mathrm{T}\dagger} \mathbf{u}_2^{\mathrm{T}})^{\dagger} (\mathbf{r}_c - \mathbf{u}_2^{\mathrm{T}\dagger} \mathbf{r}_b^{\mathrm{T}} \mathbf{u}_1) \mathbf{u}_1^{\dagger}.$$

 $\bullet\,$ Substituting the solution for ${\bm S}$ into $\Delta {\bm B}$ yields that

$$\Delta \mathbf{B}^* = \mathbf{u}_2^{\mathrm{T}\dagger} \mathbf{r}_b^{\mathrm{T}} + (\mathbf{I} - \mathbf{u}_2^{\mathrm{T}\dagger} \mathbf{u}_2^{\mathrm{T}}) \mathbf{r}_c \mathbf{u}_1^{\dagger}$$

・ロト ・回ト ・ヨト ・ヨト

 $\bullet\,$ Substituting the solution for ${\bm S}$ into $\Delta {\bm B}$ yields that

$$\Delta \boldsymbol{B}^{*} = \boldsymbol{u}_{2}{}^{\mathrm{T}\dagger}\boldsymbol{r}_{\textit{b}}^{\mathrm{T}} + (\boldsymbol{I} - \boldsymbol{u}_{2}{}^{\mathrm{T}\dagger}\boldsymbol{u}_{2}{}^{\mathrm{T}})\boldsymbol{r}_{\textit{c}}\boldsymbol{u}_{1}{}^{\dagger}$$

• This formula is not invariant with respect to linear transformations.

 $\bullet\,$ Substituting the solution for ${\bm S}$ into $\Delta {\bm B}$ yields that

$$\Delta \boldsymbol{B}^{*} = \boldsymbol{u}_{2}{}^{\mathrm{T}\dagger}\boldsymbol{r}_{b}^{\mathrm{T}} + (\boldsymbol{I} - \boldsymbol{u}_{2}{}^{\mathrm{T}\dagger}\boldsymbol{u}_{2}{}^{\mathrm{T}})\boldsymbol{r}_{c}\boldsymbol{u}_{1}{}^{\dagger}$$

- This formula is not invariant with respect to linear transformations.
- We want to find such a formula by solving the following variational problem:

min
$$\|\mathbf{W}_1^{-1}\Delta \mathbf{B}\mathbf{W}_2^{-1}\|_{l}$$

s.t. $\Delta \mathbf{B}^T \mathbf{u}_2 = \mathbf{r}_b$
 $\Delta \mathbf{B} \mathbf{u}_1 = \mathbf{r}_c$

where \mathbf{W}_1 is any symmetric positive definite matrix such that $\mathbf{W}_1\mathbf{W}_1^T\mathbf{u}_2 = \mathbf{c}$, and \mathbf{W}_2 is any symmetric positive definite matrix such that $\mathbf{W}_2^T\mathbf{W}_2\mathbf{u}_1 = \mathbf{b}$. For instance, \mathbf{W}_1 can be considered as $\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^T$ and \mathbf{W}_2 can be considered as \mathbf{A} .

イロト 不得下 イヨト イヨト

 $\bullet\,$ Substituting the solution for ${\bm S}$ into $\Delta {\bm B}$ yields that

$$\Delta \boldsymbol{B}^{*} = \boldsymbol{u}_{2}{}^{\mathrm{T}\dagger}\boldsymbol{r}_{b}^{\mathrm{T}} + (\boldsymbol{I} - \boldsymbol{u}_{2}{}^{\mathrm{T}\dagger}\boldsymbol{u}_{2}{}^{\mathrm{T}})\boldsymbol{r}_{c}\boldsymbol{u}_{1}{}^{\dagger}$$

- This formula is not invariant with respect to linear transformations.
- We want to find such a formula by solving the following variational problem:

min
$$\|\mathbf{W}_1^{-1} \Delta \mathbf{B} \mathbf{W}_2^{-1}\|_F$$

s.t. $\Delta \mathbf{B}^T \mathbf{u}_2 = \mathbf{r}_b$
 $\Delta \mathbf{B} \mathbf{u}_1 = \mathbf{r}_c$

where \mathbf{W}_1 is any symmetric positive definite matrix such that $\mathbf{W}_1\mathbf{W}_1^T\mathbf{u}_2 = \mathbf{c}$, and \mathbf{W}_2 is any symmetric positive definite matrix such that $\mathbf{W}_2^T\mathbf{W}_2\mathbf{u}_1 = \mathbf{b}$. For instance, \mathbf{W}_1 can be considered as $\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^T$ and \mathbf{W}_2 can be considered as \mathbf{A} .

• The solution is given as:

$$\Delta \mathbf{B}^* = \frac{\mathbf{c}\mathbf{r}_b^T}{\mathbf{u}_2^T \mathbf{c}} + \frac{\mathbf{r}_c \mathbf{b}^T}{\mathbf{u}_1^T \mathbf{b}} - \frac{\mathbf{u}_2^T \mathbf{r}_c \mathbf{c} \mathbf{b}^T}{\mathbf{u}_2^T \mathbf{c} \mathbf{u}_1^T \mathbf{b}}$$

イロト 不得下 イヨト イヨト

• This formula can be rewritten as

$$\Delta \mathbf{B} = \begin{bmatrix} \frac{\mathbf{c}}{\mathbf{u}_2^T \mathbf{c}} & \mathbf{r_c} & -\frac{\mathbf{c}}{\mathbf{u}_2^T \mathbf{c}} \end{bmatrix} \begin{bmatrix} \mathbf{r_b}^T \\ \frac{\mathbf{b}^T}{\mathbf{u}_1^T \mathbf{b}} \\ \frac{\mathbf{u}_2^T \mathbf{r}_c \mathbf{b}^T}{\mathbf{u}_1^T \mathbf{b}} \end{bmatrix} = \mathbf{V} \mathbf{W}^T,$$

メロト メタト メヨト メヨト

• This formula can be rewritten as

$$\Delta \mathbf{B} = \begin{bmatrix} \frac{\mathbf{c}}{\mathbf{u}_{2}^{T}\mathbf{c}} & \mathbf{r_{c}} & -\frac{\mathbf{c}}{\mathbf{u}_{2}^{T}\mathbf{c}} \end{bmatrix} \begin{bmatrix} \mathbf{r_{b}}^{T} \\ \frac{\mathbf{b}^{T}}{\mathbf{u}_{1}^{T}\mathbf{b}} \\ \frac{\mathbf{u}_{2}^{T}\mathbf{r_{c}\mathbf{b}}^{T}}{\mathbf{u}_{1}^{T}\mathbf{b}} \end{bmatrix} = \mathbf{V}\mathbf{W}^{\mathrm{T}},$$

• The preconditioner can be updated by using the following formula

$$\mathcal{P}_{1} = \mathcal{P}_{0} + \begin{pmatrix} \mathbf{0} & \mathbf{W}\mathbf{V}^{\mathsf{T}} \\ \mathbf{V}\mathbf{W}^{\mathsf{T}} & \mathbf{0} \end{pmatrix} = \mathcal{P}_{0} + \underbrace{\begin{pmatrix} \mathbf{0} & \mathbf{W} \\ \mathbf{V} & \mathbf{0} \end{pmatrix}}_{\mathbf{F}} \underbrace{\begin{pmatrix} \mathbf{W}^{\mathsf{T}} & \mathbf{0} \\ \mathbf{0} & \mathbf{V}^{\mathsf{T}} \end{pmatrix}}_{\mathbf{G}}$$

• The inverse formula is then given by

$$\mathcal{P}_{F}^{-1} = \mathcal{P}_{0}^{-1} - \mathcal{P}_{0}^{-1} \mathbf{F} (\mathbf{I}_{6} + \mathbf{G} \mathcal{P}_{0}^{-1} \mathbf{F})^{-1} \mathbf{G} \mathcal{P}_{0}^{-1}$$

where **F** is an (2n + m)-by-6 matrix and **G** is an 6-by-(2n + m) matrix.

イロン イロン イヨン イヨン

Numerical Results

Implementation platform

- We used the Object Oriented Prediction System (OOPS) developed by ECMWF
- OOPS consists of simplified models of a real-system

The model

• It is a two-layer quasi-geostraphic model with 1600 grid-points

Implementation details

- There are 100 observations of stream function every 3 hours, 100 wind observations plus 100 wind-speed observations every 6 hours
- The error covariance matrices are assumed to be horizontally isotropic and homogeneous, with Gaussian spatial structure
- The analysis window is 24 hours, and is divided into 8 subwindows
- 3 outer loops with 10 inner loops each are performed

Methods

- Standard weak-constrained 4D-Var formulation
 - \rightarrow Solution method is preconditioned conjugate-gradients

・ロト ・回ト ・ヨト ・ヨト

Methods

- Standard weak-constrained 4D-Var formulation
 - \rightarrow Solution method is preconditioned conjugate-gradients
- 2 Saddle point formulation with an updated inexact constraint preconditioner
 - \rightarrow Solution method is GMRES
 - \rightarrow The initial preconditioner is chosen as

$$\mathcal{P}_0 = \begin{pmatrix} \mathbf{D} & \mathbf{0} & \widetilde{\mathbf{L}} \\ \mathbf{0} & \mathbf{R} & \mathbf{0} \\ \widetilde{\mathbf{L}}^{\mathrm{T}} & \mathbf{0} & \mathbf{0} \end{pmatrix} \quad \text{with} \quad \widetilde{\mathbf{L}} = \begin{pmatrix} \mathbf{I} & & & \\ -\mathbf{I} & \mathbf{I} & & \\ & \ddots & \ddots & \\ & & -\mathbf{I} & \mathbf{I} \end{pmatrix}$$

<ロ> (日) (日) (日) (日) (日)

Methods

- Standard weak-constrained 4D-Var formulation
 - \rightarrow Solution method is preconditioned conjugate-gradients
- **②** Saddle point formulation with an updated inexact constraint preconditioner
 - \rightarrow Solution method is GMRES
 - \rightarrow The initial preconditioner is chosen as

$$\mathcal{P}_{0} = \begin{pmatrix} \mathbf{D} & \mathbf{0} & \widetilde{\mathbf{L}} \\ \mathbf{0} & \mathbf{R} & \mathbf{0} \\ \widetilde{\mathbf{L}}^{\mathrm{T}} & \mathbf{0} & \mathbf{0} \end{pmatrix} \quad \text{with} \quad \widetilde{\mathbf{L}} = \begin{pmatrix} \mathbf{I} & & & \\ -\mathbf{I} & \mathbf{I} & & \\ & \ddots & \ddots & \\ & & -\mathbf{I} & \mathbf{I} \end{pmatrix}.$$
$$\mathcal{P}_{0}^{-1} = \begin{pmatrix} \mathbf{0} & \mathbf{0} & \widetilde{\mathbf{L}}^{-\mathrm{T}} \\ \mathbf{0} & \mathbf{R}^{-1} & \mathbf{0} \\ \widetilde{\mathbf{L}}^{-1} & \mathbf{0} & -\widetilde{\mathbf{L}}^{-1}\mathbf{D}\widetilde{\mathbf{L}}^{-\mathrm{T}} \end{pmatrix} \quad \text{and} \quad \widetilde{\mathbf{L}}^{-1} = \begin{pmatrix} \mathbf{I} & & & \\ \mathbf{I} & \mathbf{I} & & \\ \vdots & \ddots & \ddots & \\ \mathbf{I} & \cdots & \mathbf{I} & \mathbf{I} \end{pmatrix}$$

Second-level preconditioners:

- **(**) T_k : The preconditioner obtained by using the TR1 update
- **2** \mathcal{F}_k : The preconditioner obtained by using the least-Frobenius update

The performance of the second level preconditioners

- Second-level preconditioners obtained by using updates may accelerate the convergence
- When all pairs are used the least-Frobenius update is more stable.

・ロン ・回 と ・ ヨン・

Overall performance compared with the standard 4DVar formulation

Figure: Nonlinear cost function values along iterations

Figure: Nonlinear cost function values along sequential subwindow integrations

- At each iteration the standard 4DVar formulation requires one application of L⁻¹, followed by one application of L^{-T} (16 sequential subwindow integrations)
- At each iteration of saddle point formulation require one subwindow integration (provided that L^{-1} and L^{-T} are applied simultaneously)

Conclusions

- The saddle point formulation of weak-constraint 4D-Var allows parallelisation in the time dimension.
- Finding an effective preconditioner is a key issue in solving the saddle point systems.
- The inexact constraint preconditioner can be used to precondition the saddle point formulation of 4D-Var.
- When solving a sequence of saddle point systems, a low-rank low-cost update formulas can be found to further improve preconditioning.
- The preconditioned GMRES algorithm for saddle point formulation is competitive with the existing algorithms and has the potential to allow 4D-Var to remain computationally viable on next-generation computer architectures.

Thank you for your attention !

・ロト ・四ト ・ヨト ・ヨト