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From Mike’s presentation we have seen that:

Incremental 4D-Var suffers from parallelization in the time dimension.

Solution: Saddle-point approach

What will we discuss in this talk?

Can we maintain good convergence properties of 4D-Var?

Can we further accelerate the convergence rate?

Preconditioning of saddle point approach
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Saddle Point Approach

Saddle Point Approach
Let us consider weak-constraint 4D-Var as a constrained problem and write
the Lagrangian function. Then the stationary point of L satisfies the system
of equations that can be written in a matrix form as:D 0 L

0 R H
LT HT 0

λ
µ
δx

 =

b
d
0


This system is called the saddle-point formulation of 4D-Var.

L =


I
−M1 I

−M2 I
. . .

. . .

−MN I

 is an n-by-n matrix.

H = diag(H0,H1, . . . ,HN) is an n-by-m matrix.

D = diag(B,Q1, . . . ,QN) is an n-by-n matrix.

R = diag(R0,R1, . . . ,RN) is an m-by-m matrix.
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Saddle Point Approach

Saddle Point Approach

In matrix form: D 0 L
0 R H
LT HT 0


︸ ︷︷ ︸

A

λ
µ
δx

 =

b
d
0



where A is a (2n + m)-by-(2n + m) indefinite symmetric matrix.

The solution of this problem is a saddle point

→ This approach is time-parallel.

→ Solution algorithm: GMRES method with a preconditioner.
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Preconditioning of saddle point approach

Preconditioning

A preconditioner attempts to improve the spectral properties of the system
matrix A.

When using GMRES, a clustered spectrum often results in rapid convergence,
especially the departure from normality of the preconditioned matrix is not
too high (Benzi et. al 2005).

→ When solving an indefinite saddle point system with GMRES, it is crucial to
find an efficient preconditioner.
Efficient preconditioner P

is an approximation to A
the cost of constructing and applying the preconditioner should be less than
the gain in computational cost

exploits the block structure of the problem for saddle point systems

Implementation

Solving a system A u = f with a preconditioner P requires solving

(P−1A)u = P−1f
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Preconditioning of saddle point approach

Preconditioning Saddle Point Systems

A =

D 0 L
0 R H
LT HT 0

 =

(
A BT

B 0

)

Block preconditioners (Kuznetsov (1995), Murphy, Golub and Wathen (2000),
Bramble and Pasciak (1988))

P =

„
A 0
0 −S

«
, P =

„
A BT

0 S

«
where S = BA−1BT is the Schur complement (the unpreconditioned 4D-Var
Hessian).

Constraint preconditioners (Bergamaschi et. al (2004), Gould and Wathen (2000),
Benzi et al. 2005)

P =

„eA BT

B 0

«
It is assumed that solving the system involving P is significantly easier than solving
the original system.

Hermitian and skew Hermitian splitting of A, stationary iterative methods,
multilevel methods, ... (Benzi et al (2005))
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Preconditioning of saddle point approach

Preconditioning Saddle Point Formulation of 4D-Var

A =

D 0 L
0 R H
LT HT 0

 =

(
A BT

B 0

)

The inexact constraint preconditioner proposed by (Bergamaschi et. al.
2005) is promising for our application. The preconditioner can be chosen as:

P =

(
A B̃T

B̃ 0

)
=

D 0 L̃
0 R 0

L̃T 0 0


where

I eL is an approximation to the matrix L
I eB = [eLT 0] is a full row rank approximation of the matrix B ∈ Rn×(m+n)
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Preconditioning of saddle point approach

Preconditioning Saddle Point Formulation of 4D-Var

D 0 L
0 R H
LT HT 0


︸ ︷︷ ︸

Ak

λ
µ
δx


︸ ︷︷ ︸

u

=

b
d
0


︸ ︷︷ ︸

fk

When solving a sequence of saddle point systems, can we further improve the
preconditioning for the outer loops k > 1?

Can we find low-rank updates for the inexact constraint preconditioner that
approximates A−1 or its effect on a vector?
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Preconditioning of saddle point approach

Preconditioning Saddle Point Formulation of 4D-Var

For k = 1, we have the inexact constraint preconditioner:

P =

 
A eBTeB 0

!

For k > 1, we want to find a low-rank update ∆B = B− eB and use the updated
preconditioner:

P =

 
A eBTeB 0

!
+

„
0 ∆BT

∆B 0

«
→ GMRES performs matrix-vector products with A :„

A BT

B 0

«
| {z }

Ak

„
u1

u2

«
| {z }

u
(k)
j

=

„
b
c

«
|{z}
f
(k)
j

→ We can use the pairs (u(k)
j , f(k)

j ) to find an update ∆B.
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Preconditioning of saddle point approach

Preconditioning Saddle Point Formulation of 4D-Var

„
A BT

B 0

«„
u1

u2

«
=

„
b
c

«
⇒

 
A eBTeB 0

!„
u1

u2

«
+

„
0 ∆BT

∆B 0

«„
u1

u2

«
=

„
b
c

«

⇒

 
Au1 + eBTu2eBu1

!
+

„
∆BTu2

∆Bu1

«
=

„
b
c

«

⇒
„

∆BTu2

∆Bu1

«
=

 
b− Au1 − eBTu2

c− eBu1

!

Let’s define the vectors rb and rc as

rb = b− Au1 − eBTu2

rc = c− eBu1

Then we have

∆BTu2= rb (1)

∆Bu1= rc (2)

→ We want to find an update ∆B satisfying these equations.
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Preconditioning Saddle Point Formulation of 4D-Var
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Preconditioning of saddle point approach

Preconditioning Saddle Point Formulation of 4D-Var
A rank-1 update to ∆B can be given by

∆B = αvwT

where v ∈ Rn and w ∈ Rn+m.

Substituting this relation into equations (1) and (2), we get

∆BTu2 = rb ⇔ αwvTu2 = rb

∆Bu1 = rc ⇔ αvwTu1 = rc

from which we obtain that

w = rb/αvTu2

v = rc/αwTu1

With the choice of
w = rb and v = rc

we can show that α is compatible and given as

α = 1/vTu2 = 1/wTu1
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Preconditioning of saddle point approach

Preconditioning Saddle Point Formulation of 4D-Var

As a result, an inexact constraint preconditioner P can be updated from

Pj+1 = Pj +

„
0 ∆BT

∆B 0

«
= Pj +

„
0 αwvT

αvwT 0

«
,

where w = rb, v = rc and α = 1/vTu2.

We can rewrite this formula as

Pj+1 = Pj +

„
0 w
v 0

«
| {z }

F

„
αwT 0

0 αvT

«
| {z }

G

where F is an (2n + m)-by-2 matrix and G is an 2-by-(2n + m) matrix.

Using the Sherman-Morrison-Woodbury formula on this equation gives the inverse
update as

P−1
j+1 = P−1

j − P−1
j F(I2 + GP−1

j F)−1GP−1
j
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Preconditioning of saddle point approach

Preconditioning Saddle Point Formulation of 4D-Var

We have shown that it is possible to find a low-cost low-rank update for the
inexact constraint preconditioner.

This update amounts to the two-sided-rank-one (TR1) update proposed by
Griewank and Walther (2002).

TR1 update:

It generalizes the classical symmetric rank-one update.

It maintains the validity of all previous secant conditions.

It is invariant with respect to linear transformations

It has no least change characterization in terms of any particular matrix norm.

→ Next slides are dedicated to find the least-Frobenius norm update.

Frobenius norm : ‖A‖F =
√∑m

i=1

∑n
j=1 |a2

ij |
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Preconditioning of saddle point approach

Preconditioning Saddle Point Formulation of 4D-Var
Remember that we want to find an update such that

∆BTu2= rb (1)

∆B u1= rc (2)

Any solution ∆B satisfying Equation (1) can be written as [Lemma 2.1](Sun 1999)

∆BT = rbu2
† + S(I− u2u

†
2),

where † denotes the pseudo-inverse and S is an (n + m)× n matrix. Inserting this
relation into (2) yields

u2
T†rb

Tu1 + (I− u2
T†u2

T)STu1 = rc .

If this equation admits one solution, its least Frobenius norm solution,

min
ST∈Rm×n

‖(rc − u2
T†rTb u1)− (I− u2

T†u2
T)STu1‖F ,

can be written as [Lemma 2.3](Sun 1999)

(ST)∗ = (I− u2
T†u2

T)†(rc − u2
T†rTb u1)u1

†.
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where † denotes the pseudo-inverse and S is an (n + m)× n matrix. Inserting this
relation into (2) yields

u2
T†rb

Tu1 + (I− u2
T†u2

T)STu1 = rc .

If this equation admits one solution, its least Frobenius norm solution,

min
ST∈Rm×n

‖(rc − u2
T†rTb u1)− (I− u2

T†u2
T)STu1‖F ,

can be written as [Lemma 2.3](Sun 1999)

(ST)∗ = (I− u2
T†u2

T)†(rc − u2
T†rTb u1)u1

†.
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Preconditioning of saddle point approach

Preconditioning Saddle Point Formulation of 4D-Var
Substituting the solution for S into ∆B yields that

∆B∗ = u2
T†rTb + (I− u2

T†u2
T)rcu1

†

This formula is not invariant with respect to linear transformations.

We want to find such a formula by solving the following variational problem:

min ‖W−1
1 ∆BW−1

2 ‖F
s.t. ∆BTu2 = rb

∆B u1 = rc

where W1 is any symmetric positive definite matrix such that W1W
T
1 u2 = c, and

W2 is any symmetric positive definite matrix such that WT
2 W2u1 = b. For instance,

W1 can be considered as BA−1BT and W2 can be considered as A.

The solution is given as:

∆B∗ =
crT

b

uT
2 c

+
rcb

T

uT
1 b
− uT

2 rccb
T

uT
2 cuT

1 b
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S. Gürol (CERFACS) 1 December 2014 17 / 24



Preconditioning of saddle point approach

Preconditioning Saddle Point Formulation of 4D-Var
Substituting the solution for S into ∆B yields that

∆B∗ = u2
T†rTb + (I− u2

T†u2
T)rcu1

†

This formula is not invariant with respect to linear transformations.

We want to find such a formula by solving the following variational problem:

min ‖W−1
1 ∆BW−1

2 ‖F
s.t. ∆BTu2 = rb

∆B u1 = rc

where W1 is any symmetric positive definite matrix such that W1W
T
1 u2 = c, and

W2 is any symmetric positive definite matrix such that WT
2 W2u1 = b. For instance,

W1 can be considered as BA−1BT and W2 can be considered as A.

The solution is given as:

∆B∗ =
crT

b

uT
2 c

+
rcb

T

uT
1 b
− uT

2 rccb
T

uT
2 cuT

1 b
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Preconditioning of saddle point approach

This formula can be rewritten as

∆B =
[

c
uT

2 c
rc − c

uT
2 c

]


rbT

bT

uT
1 b

u2
T rcb

T

uT
1 b

 = VWT,

The preconditioner can be updated by using the following formula

P1 = P0 +

(
0 WVT

VWT 0

)
= P0 +

(
0 W
V 0

)
︸ ︷︷ ︸

F

(
WT 0
0 VT

)
︸ ︷︷ ︸

G

The inverse formula is then given by

P−1
F = P−1

0 − P−1
0 F(I6 + GP−1

0 F)−1GP−1
0

where F is an (2n + m)-by-6 matrix and G is an 6-by-(2n + m) matrix.
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Numerical Results with OOPS qg-model

Numerical Results

Implementation platform

We used the Object Oriented Prediction System (OOPS) developed by
ECMWF

OOPS consists of simplified models of a real-system

The model

It is a two-layer quasi-geostraphic model with 1600 grid-points

Implementation details

There are 100 observations of stream function every 3 hours, 100 wind
observations plus 100 wind-speed observations every 6 hours

The error covariance matrices are assumed to be horizontally isotropic and
homogeneous, with Gaussian spatial structure

The analysis window is 24 hours, and is divided into 8 subwindows

3 outer loops with 10 inner loops each are performed
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Numerical Results with OOPS qg-model

Methods

1 Standard weak-constrained 4D-Var formulation
→ Solution method is preconditioned conjugate-gradients

2 Saddle point formulation with an updated inexact constraint preconditioner
→ Solution method is GMRES
→ The initial preconditioner is chosen as

P0 =

0@D 0 eL
0 R 0eLT 0 0

1A with eL =

0BBB@
I
−I I

. . .
. . .

−I I

1CCCA .

P−1
0 =

0@ 0 0 eL−T

0 R−1 0eL−1 0 −eL−1DeL−T

1A and eL−1 =

0BBB@
I
I I
...

. . .
. . .

I · · · I I

1CCCA .

Second-level preconditioners:

1 Tk : The preconditioner obtained by using the TR1 update

2 Fk : The preconditioner obtained by using the least-Frobenius update
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Numerical Results with OOPS qg-model

The performance of the second level preconditioners
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Second-level preconditioners obtained by using updates may accelerate the
convergence

When all pairs are used the least-Frobenius update is more stable.
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Numerical Results with OOPS qg-model

Overall performance compared with the standard 4DVar
formulation
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Figure: Nonlinear cost function values along
iterations
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Figure: Nonlinear cost function values along
sequential subwindow integrations

At each iteration the standard 4DVar formulation requires one application of L−1,
followed by one application of L−T (16 sequential subwindow integrations)

At each iteration of saddle point formulation require one subwindow integration
(provided that L−1 and L−T are applied simultaneously)
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Conclusions

Conclusions

The saddle point formulation of weak-constraint 4D-Var allows parallelisation
in the time dimension.

Finding an effective preconditioner is a key issue in solving the saddle point
systems.

The inexact constraint preconditioner can be used to precondition the saddle
point formulation of 4D-Var.

When solving a sequence of saddle point systems, a low-rank low-cost update
formulas can be found to further improve preconditioning.

The preconditioned GMRES algorithm for saddle point formulation is
competitive with the existing algorithms and has the potential to allow
4D-Var to remain computationally viable on next-generation computer
architectures.
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Thank you for your attention !
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