A general hybrid formulation of the background-error covariance matrix for ensemble-variational ocean data assimilation

Anthony Weaver

Andrea Piacentini, Serge Gratton, Selime Gürol, Jean Tshimanga

CERFACS / SUC URA 1875, Toulouse

Acknowledgements:
LEFE-MANU
ERA-CLIM2 (FP7)
FILAOS and AVENUE (RTRA)
UK Met Office

- This work contributes to the development of NEMOVAR, a variational ocean data assimilation system for the NEMO model, with a focus on the global ocean.
- NEMOVAR is developed by a consortium consisting of CERFACS, ECMWF, INRIA and Met Office.
- Versions of NEMOVAR are used operationally at ECMWF (Balmaseda et al. 2013, QJRMS) and the Met Office (Waters et al. 2014, QJRMS).
- The ECMWF system produces an ensemble of ocean analyses but there is currently no coupling of the ensemble with the background error covariance matrix (B).
- This presentation describes recent extensions to NEMOVAR to exploit ensemble perturbations for specifying a flow-dependent B.

Diagnostics from the ECMWF ocean reanalysis (ORAS4) Σ CERFACS
Temperature Bkg Err Std Devs: global (0-50m)

- Discrepencies between the specified and expected background-error standard deviations (blue and red curves, resp.) are a signal of suboptimality in the covariance specifications.
- There is evidence of missing flow dependence in B, especially in response to the changing observing system (black curve).
- An ensemble-based B should be able to capture this flow dependence.
- We consider the problem of estimating a $N \times N$ background error covariance matrix B from an ensemble of $N_{\mathrm{e}} \ll N$ error realizations.
- Let $\left\{\epsilon_{p}=\mathrm{x}_{p}-\mathrm{x}_{0}\right\}$ denote an ensemble of $p=1, \ldots, N_{\mathrm{e}}$ state error realizations with respect to an unperturbed control member x_{0}.
- If a transformation of control variables is used (e.g., with a balance opertor $\mathrm{K}_{\text {bal }}$) then we are interested here in the covariances of the transformed perturbations: $\epsilon_{p} \rightarrow \mathrm{~K}_{\text {bal }}^{-1} \epsilon_{p}$.
- Let $\epsilon_{p}^{\prime}=\epsilon_{p}-\bar{\epsilon}$ where $\bar{\epsilon}=\frac{1}{N_{\mathrm{e}}} \sum_{p=1}^{N_{\mathrm{e}}} \epsilon_{p}$, and let

$$
\underline{\mathbf{X}}^{\prime}=\frac{1}{\sqrt{N_{\mathrm{e}}-1}}\left(\begin{array}{lll}
\epsilon_{1}^{\prime} & \ldots & \boldsymbol{\epsilon}_{N_{\mathrm{e}}}^{\prime}
\end{array}\right)
$$

- Let $\mathbf{D}=\mathbf{D}^{1 / 2} \mathbf{D}^{1 / 2}=\operatorname{diag}\left(\underline{\mathbf{X}}^{\prime} \underline{\mathbf{X}}^{\prime \mathrm{T}}\right)$ be the matrix of ensemble estimated variances.
- Let $\underline{\widehat{\boldsymbol{X}}}^{\prime}=\mathbf{D}^{-1 / 2} \underline{\mathbf{X}}^{\prime}=\left(\begin{array}{lll}\widehat{\boldsymbol{\epsilon}}_{1}^{\prime} & \ldots & \widehat{\boldsymbol{\epsilon}}_{N_{\mathrm{e}}}^{\prime}\end{array}\right)$ be normalized perturbations.

Colloque National sur I'Assimilation de Données, Toulouse, 1-3 décembre 2014

$$
\mathbf{B}=\alpha \mathbf{B}_{\mathrm{mod}}+\beta \mathbf{B}_{\mathrm{ens}}
$$

where α and β are + ve weighting constants (often such that $\alpha+\beta=1$).

$$
\mathbf{B}_{\mathrm{mod}}=\mathbf{K}_{\mathrm{bal}} \mathbf{D}^{1 / 2} \mathbf{C}_{\mathrm{mod}} \mathbf{D}^{1 / 2} \mathbf{K}_{\mathrm{bal}}^{\mathrm{T}}
$$

- $\mathrm{C}_{\text {mod }}$ is block-diagonal with respect to the transformed variables, where each block is defined by a parametric correlation model.
- $\mathrm{K}_{\text {bal }}$ is a multivariate balance operator.

$$
\mathbf{B}_{\mathrm{ens}}=\mathbf{K}_{\mathrm{bal}} \mathbf{D}^{1 / 2} \underbrace{\left(\widehat{\mathbf{X}}^{\prime} \underline{\mathbf{X}}^{\prime \mathrm{T}} \circ \mathbf{C}_{\mathrm{loc}}\right)}_{\mathbf{C}_{\mathrm{ens}}} \mathbf{D}^{1 / 2} \mathbf{K}_{\mathrm{bal}}^{\mathrm{T}}
$$

- $\mathrm{C}_{\mathrm{ens}}$ is a sample-based correlation matrix for the transformed variables.
- $\mathrm{C}_{\text {loc }}$ is a localization matrix acting on the raw sample correlation matrix.

Colloque National sur I'Assimilation de Données, Toulouse, 1-3 décembre 2014

- $\mathrm{C}_{\text {loc }}$ is applied as a Schur-product (o) to remove spurious long distance correlations from the raw sample estimate ($\mathrm{N}=\mathrm{L} \circ \mathrm{M} \Longrightarrow N_{i j}=L_{i j} M_{i j}$).
- "Univariate" formulation:

$$
\mathrm{C}_{\mathrm{loc}}^{(1)}=\left(\begin{array}{ccc}
\mathrm{C}_{\mathrm{loc}, T} & \cdots & \mathbf{0} \\
\vdots & \ddots & \vdots \\
\mathbf{0} & \cdots & \mathrm{C}_{\mathrm{loc}, v}
\end{array}\right)
$$

- Localize each variable ξ separately, with possibly different $\mathbf{C}_{\text {loc }, \xi}$ for each ξ.
- "Multivariate" formulation:

$$
\mathrm{C}_{\mathrm{loc}}^{(2)}=\left(\begin{array}{ccc}
\mathrm{C}_{\mathrm{loc}, T} & \cdots & \mathrm{C}_{\mathrm{loc}, T} \mathbf{A}_{v \rightarrow T} \\
\vdots & \ddots & \vdots \\
\mathbf{A}_{v \rightarrow T}^{\mathrm{T}} \mathrm{C}_{\mathrm{loc}, T} & \cdots & \mathbf{A}_{v \rightarrow T}^{\mathrm{T}} \mathrm{C}_{\mathrm{loc}, T} \mathbf{A}_{v \rightarrow T}
\end{array}\right)
$$

- Impose the same localization on the auto- and cross-variable correlations, with the use of an averaging operator $\mathbf{A}_{\xi_{1} \rightarrow \xi_{2}}$ if ξ_{1} and ξ_{2} are defined at different points on the grid.

Colloque National sur l'Assimilation de Données, Toulouse, 1-3 décembre 2014

- The Schur product for each variable ξ can be rewritten as a sum of matrix operators:

$$
\widehat{\mathbf{X}}_{\xi}^{\prime}\left(\widehat{\mathbf{X}}_{\xi}^{\prime}\right)^{\mathrm{T}} \circ \mathbf{C}_{\mathrm{loc}, \xi}=\sum_{p=1}^{N_{\mathrm{e}}} \boldsymbol{\Lambda}_{p, \xi} \mathbf{C}_{\mathrm{loc}, \xi} \boldsymbol{\Lambda}_{p, \xi}
$$

- $\boldsymbol{\Lambda}_{p, \xi}$ is a diagonal matrix whose diagonal is the p th column of $\widehat{\mathbf{X}}_{\xi}^{\prime}$.
- A computationally efficient filter can be used to define $\mathbf{C}_{\mathrm{loc}, \xi}$.
- The multivariate formulation can be conveniently factored as

$$
\mathrm{C}_{\mathrm{loc}}^{(2)}=\left(\begin{array}{c}
\mathbf{I}_{N_{T}} \\
\vdots \\
\mathbf{A}_{v \rightarrow T}^{\mathrm{T}}
\end{array}\right) \mathrm{C}_{\mathrm{loc}, T}\left(\begin{array}{lll}
\mathbf{I}_{N_{T}} & \cdots & \mathbf{A}_{v \rightarrow T}
\end{array}\right)
$$

- Only one localization application is required per ensemble member.
- This reduces the cost of localization, but also the rank of $\mathbf{B}_{\text {ens }}$ which is determined by the rank of $\mathbf{C}_{\mathrm{loc}, \boldsymbol{T}}$.

Colloque National sur I'Assimilation de Données, Toulouse, 1-3 décembre 2014

- A hybrid B involves a sum of operators:

$$
\begin{aligned}
& \mathbf{B}=\alpha \mathbf{B}_{\mathrm{mod}}+\beta \mathbf{B}_{\mathrm{ens}} \\
&=\left(\alpha^{1 / 2} \mathbf{B}_{\text {mod }}^{1 / 2}\right. \\
&\left.\beta^{1 / 2} \mathbf{B}_{\mathrm{ens}}^{1 / 2}\right)\binom{\alpha^{1 / 2}\left(\mathbf{B}_{\text {mod }}^{1 / 2}\right)^{\mathrm{T}}}{\beta^{1 / 2}\left(\mathbf{B}_{\text {ens }}^{1 / 2}\right)^{\mathrm{T}}} \\
& \equiv \underline{\mathbf{B}}^{1 / 2}\left(\underline{\mathbf{B}}^{1 / 2}\right)^{\mathrm{T}}
\end{aligned}
$$

- Conventional 3D-Var/4D-Var requires preconditioning the cost function via a control variable transformation involving $\underline{B}^{1 / 2}$.
- Large vectors are required in the minimization algorithm since $\underline{B}^{1 / 2}$ is rectangular.
- The rectangular nature of $\underline{B}^{1 / 2}$ increases with ensemble size due to localization.
- The "square-root" factorization of the localized correlation block corresponding to variable ξ is

$$
\sum_{p=1}^{N_{\mathrm{e}}} \boldsymbol{\Lambda}_{p, \xi} \mathbf{C}_{\mathrm{loc}, \xi} \boldsymbol{\Lambda}_{p, \xi}=\left(\begin{array}{lll}
\boldsymbol{\Lambda}_{p, \xi} \mathbf{C}_{\mathrm{loc}, \xi}^{1 / 2} & \cdots & \boldsymbol{\Lambda}_{p, \xi} \mathbf{C}_{\mathrm{loc}, \xi}^{1 / 2}
\end{array}\right)\left(\begin{array}{c}
\left(\mathbf{C}_{\mathrm{loc}, \xi}^{1 / 2}\right)^{\mathrm{T}} \boldsymbol{\Lambda}_{p, \xi} \\
\vdots \\
\left(\mathbf{C}_{\mathrm{loc}, \xi}^{1 / 2}\right)^{\mathrm{T}} \boldsymbol{\Lambda}_{p, \xi}
\end{array}\right)
$$

- This is a product of rectangular matrices of size: $N_{\xi} \times N_{\xi}=\left(N_{\xi} \times N_{\xi} N_{\mathrm{e}}\right) \times\left(N_{\xi} N_{\mathrm{e}} \times N_{\xi}\right)$.
- Preconditioning strategies that involve \mathbf{B} rather than $\underline{B}^{1 / 2}$ are preferable to avoid excessive memory requirements.
(1) The possibility of using ensemble perturbations to calibrate parameters of the covariance model ($\mathrm{B}_{\mathrm{mod}}$) and/or to define the localized sample covariance matrix ($\mathrm{B}_{\text {ens }}$).
(2) The use of B -preconditioned primal- and dual-space conjugate gradient algorithms (B-PCG and RB-PCG).
(3) "Univariate" and "multivariate" formulations of the spatial localization operator in $\mathrm{B}_{\text {ens }}$.
(9) The use of a diffusion operator for defining the correlation model in $B_{\text {mod }}$ and the spatial localization operator in $\mathbf{B}_{\text {ens }}$, and for filtering ensemble-estimated parameters in both $\boldsymbol{B}_{\text {mod }}$ and $\boldsymbol{B}_{\text {ens }}$.
(3) Revised numerical algorithms for implicitly formulated diffusion operators.
(0) An algorithm for determining appropriate filtering and localization scales as a function of ensemble size.

B-prconditioned conjugate gradient algorithms Σ CERFACS

(Gratton and Tshimanga 2009, QJRMS; Gürol et al. 2014, QJRMS)

- B-Preconditioned CG (B-PCG) and Restricted B-preconditioned CG (RB-PCG) produce identical iterates within machine precision.
- Memory and CPU requirements can be significantly less with RB-PCG than with B-PCG, especially when reorthogonalization is used.

Example from a global ocean 3D-Var experiment with NEMOVAR

Cost function vs iteration

Memory vs wallclock time

Colloque National sur I'Assimilation de Données, Toulouse, 1-3 décembre 2014

- Sampling error in the parameter estimates is very large with small (typical) ensemble sizes.
- Ensemble-estimated parameters must be filtered before being injected into B.

Temperature variances at 100m estimated from a 10-member pseudo-ensemble (random samples drawn from a Gaussian distribution with specified B)

True variances
True var

Raw estimate
Raw var sample estimate

Colloque National sur I'Assimilation de Données, Toulouse, 1-3 décembre 2014

Dealing with sampling error

- For ensemble-parameter filtering, we use a diffusion-based method with the filtering scale determined by an algorithm derived from optimal filtering theory (Ménétrier 2014, PhD thesis; Ménétrier et al. 2014a,b, MWR).
- The algorithm requires finding the scale ($L_{\mathrm{opt}}^{\mathrm{f}}$) that corresponds to the unique zero-crossing of an optimality function $C\left(L^{\mathrm{f}}\right)$ that depends on spatial averages of terms involving the filtered and raw variance.

Colloque National sur I'Assimilation de Données, Toulouse, 1-3 décembre 2014

- Remarkably good variance estimates are obtained even with a small ensemble.

Temperature variances at 100 m estimated from a 10-member pseudo-ensemble (random samples drawn from a Gaussian distribution with specified B)

True variances

Filtered estimate

- Raw length scale estimates are especially noisy since they are computed from the sample average of products of the spatial derivatives of the normalized ensemble perturbations:

$$
\boldsymbol{H}(\boldsymbol{x})=\sum_{p=1}^{N_{e}} \nabla \widehat{\boldsymbol{\epsilon}}_{p}^{\prime}(\boldsymbol{x})\left(\nabla \widehat{\boldsymbol{\epsilon}}_{p}^{\prime}(x)\right)^{\mathrm{T}}
$$

- The diffusion tensor is proportional to $(\boldsymbol{H}(\boldsymbol{x}))^{-1}$.

Zonal "diffusion" tensor elements (squared length scales D^{2}) for temperature at 100 m estimated from a 10-member pseudo-ensemble

True zonal D^{2} estimate
True K11

Raw zonal D^{2} estimate

Colloque National sur I'Assimilation de Données, Toulouse, 1-3 décembre 2014

- Useful large-scale information can still be extracted using the diffusion operator with optimized filtering scale.

Zonal "diffusion" tensor elements (squared length scales D^{2}) for temperature at 100 m estimated from a 10-member pseudo-ensemble

True zonal D^{2} estimate

Filtered zonal D^{2} estimate

Covariances from the hybrid B matrix
£CERFACS

$$
\mathbf{B}=\alpha \mathbf{B}_{\bmod }+\beta \mathbf{B}_{\mathrm{ens}}
$$

T - T covariances at 5 m at selected locations
$B_{\text {tru }}$
$T-T$ covariances at 5 m

\mathbf{B} with $\alpha=1$ and $\beta=0$

Colloque National sur l'Assimilation de Données, Toulouse, 1-3 décembre 2014

Covariances from the hybrid B matrix

$$
\mathbf{B}=\alpha \mathbf{B}_{\bmod }+\beta \mathbf{B}_{\mathrm{ens}}
$$

- An optimally-based technique involving the spatial average of the correlation Hessian tensor is used to determine the localization scale (B. Ménétrier, PhD thesis).
$B_{\text {tru }}$
T-T covariances at 5 m

\mathbf{B} with $\alpha=0$ and $\beta=1$

Colloque National sur I'Assimilation de Données, Toulouse, 1-3 décembre 2014

$$
\mathbf{B}=\alpha \mathbf{B}_{\mathrm{mod}}+\beta \mathbf{B}_{\mathrm{ens}}
$$

- $\mathrm{B}_{\text {mod }}$ is more robust than $\mathrm{B}_{\text {ens }}$, but general anisotropy and complex multivariate relationships are easier to account for in $\boldsymbol{B}_{\text {ens }}$ than $\boldsymbol{B}_{\text {mod }}$.
$B_{\text {tru }}$
T-T covariances at 5 m

\mathbf{B} with $\alpha=\beta=0.5$
T-T covariance at 5 m

Colloque National sur l'Assimilation de Données, Toulouse, 1-3 décembre 2014

Implicit diffusion-based correlation operators: theoretical basis $\boldsymbol{\Sigma C E R F A C S}$

(Mirouze and Weaver 2010, QJRMS; Weaver and Mirouze 2013, QJRMS)

- Similarities with correlation models based on the recursive filter (Purser et al. 2003) and smoothing norm splines (Wahba and Wendelberger 1982).
- The solution on \mathbb{S}^{2} of the elliptic equation

$$
\left(1-L^{2} \nabla^{2}\right)^{M} \psi=\gamma_{\mathrm{m}} \widehat{\psi}(\lambda, \phi)
$$

is a correlation operator

$$
\psi(\lambda, \phi)=\int_{\mathbb{S}^{2}} C(r) \widehat{\psi}\left(\lambda^{\prime}, \phi^{\prime}\right) \mathrm{d} \Sigma
$$

- The kernel is a (SPD) correlation function

$$
C(r) \approx C_{\mathrm{m}}(r) \propto\left(\frac{r}{L}\right)^{M-1} K_{M-1}\left(\frac{r}{L}\right)
$$

- K_{M-1} is the modified Bessel function of the 2nd kind of order $M-1$, L is a scale parameter ($D=\sqrt{2 M-4} L$ is the length-scale), and M is a smoothness parameter.
- $C_{\mathrm{m}}(r)$ is from the class of Matérn functions (Guttorp and Gneiting 2006).

Examples of isotropic implicit-diffusion kernels on \mathbb{S}^{2}

- Correlation kernels of $\left(\mathcal{A}^{M}\right)^{-1}$ where $\mathcal{A}=1-L^{2} \nabla^{2}$ for different M and fixed $D=\sqrt{2 M-4} L=500 \mathrm{~km}$.

Correlation function

Variance spectrum

(Weaver and Mirouze 2013, QJRMS)

- The existing $2 \times 1 \mathrm{D}$ implicit diffusion (recursive filter-like) algorithm used to represent horizontal correlations in NEMOVAR has poor scalability properties.
- This algorithm has been replaced by full 2D implicit diffusion, solved with preconditioned conjugate gradient (PCG) or Chebyshev iteration.
- Our test results show Chebyshev to have similar convergence properties to PCG but since Cheby. does not require global communications (no scalar products!) it is better suited for massively parallel machines.

Colloque National sur I'Assimilation de Données, Toulouse, 1-3 décembre 2014

- A general hybrid B matrix has been implemented in NEMOVAR with different ways of using ensembles to define covariances.
- A distinguishing feature of the formulation is the use of implicitly formulated diffusion operators for the correlation model, spatial localization operator, and parameter filtering.
- Future directions:
- Further work on improving the computational efficiency and scalability of the diffusion algorithm (LEFE-MANU proposal 2015-16).
- Further work on ensemble-parameter estimation, optimal filtering and localization (AVENUE).
- Combining with 4D-Var (collab. INRIA).
- Adaptation to operational systems and evaluation in an Ensemble Data Assimilation framework (collab. ECMWF, Met Office, ERA-CLIM2).

