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 Purpose of assimilation : reconstruct as accurately as possible the state 
of the atmospheric or oceanic flow, using all available appropriate 
information. The latter essentially consists of 

  The observations proper, which vary in nature, resolution and accuracy, 
and are distributed more or less regularly in space and time. 

  The physical laws governing the evolution of the flow, available in 
practice in the form of a discretized, and necessarily approximate, 
numerical model. 

  ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. 
Although they basically are necessary consequences of the physical laws which govern the 
flow, these properties can usefully be explicitly introduced in the assimilation process. 
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Both observations and ‘model’ are affected with some uncertainty ⇒ uncertainty on the 
estimate. 

 For some reason, uncertainty is conveniently described by probability 
distributions (don’t know too well why, but it works). 

 Assimilation is considered here as a problem in bayesian estimation. 

 Determine the conditional probability distribution for the state of the system, 
knowing everything we know. 

 Jaynes, E. T., 2003,  Probability theory: the logic of science, Cambridge University Press	



	

 Tarantola,  A.,  2005,  Inverse  Problem  Theory  and  Methods  for  Model  Parameter  Estimation,  Society 
for  Industrial  and  Applied  Mathematics  (http://www.ipgp.jussieu.fr/~tarantola/Files/Professional/Books/
InverseProblemTheory.pdf)	
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Data of the form	



z = Γx + ζ, 	

 ζ ∼ N [µ, S]	



Known data vector z belongs to data space D, dimD = m,	


Unknown state vector x belongs to state space X, dimX = n 	


Γ known (mxn)-matrix, ζ unknown ‘error’	



Then conditional  probability distribution is	



	

 	

 	

       P(x | z) = N [xa, Pa]	


where	



	

 	

 	

       xa = (Γ T S-1Γ)-1 Γ T S-1 [z -  µ]	


	

 	

 	

       Pa = (Γ T S-1Γ)-1	



 Determinacy condition : rankΓ = n. Requires m ≥ n.	
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Variational form.	



Conditional expectation xa minimizes following scalar objective function, defined on state space X 

ξ ∈  X  →  J(ξ)  ≡  (1/2) [Γξ - (z-µ)]T S-1 [Γξ - (z-µ)]	



Variational  assimilation,  implemented  heuristically  in  many  places  on  (not  too)  nonlinear  data 
operators Γ.	



Pa = [∂2J /∂ξ2]-1 	
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Conditional  probability distribution	



	

 	

 	

       P(x | z) = N [xa, Pa]	


with	



	

 	

 	

       xa = (Γ T S-1Γ)-1 Γ T S-1 [z - µ]	


	

 	

 	

       Pa = (Γ T S-1Γ)-1	



Ready recipe for determining Monte-Carlo sample of conditional pdf P(x | z) : 	



- Perturb data vector z according to its own error probability distribution  	



	

 	

 	

     z  → z‘ = z + δ, 	

 δ ∼ N [0, S]	



and compute  	


	

 	


 	

 	

 	

     x‘a = (Γ T S-1Γ)-1 Γ T S-1 [z‘ - µ]	



 x‘a is distributed according to N [xa, Pa] 	
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Ensemble Variational Assimilation (EnsVar) implements that 
algorithm, the expectations x‘a being computed by standard 
variational assimilation (optimization)	



	

 	

 	

 	





8 

Purpose of the present work	



	

 - Objectively evaluate EnsVar as a probabilistic estimator in nonlinear and/or non-Gaussian cases.	



	

 -  Objectively  compare  with  other  existing  ensemble  assimilation  algorithms  :  Ensemble 
Kalman Filter (EnKF), Particle Filters (PF)	



	

 -  Simulations  performed  on  two  small-dimensional  chaotic  systems,  the  Lorenz’96  model  and 
the Kuramoto-Sivashinsky equation	
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Experimental procedure (1)	



	

 0. Define a reference solution xt
r by integration of the numerical model	



	

 1. Produce ‘observations’ at successive times tk of the form	



	

 	

 	

 	

 yk = Hkxk + εk 	



	

 where  Hk is  (usually,  but  not  necessarily)  the  unit  operator,  and  εk  is  a  random (usually,  but  not 
necessarily, Gaussian) ‘observation error’.	
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Experimental procedure (2)	



	

 2. For given observations yk, repeat Nens times the following process	



	

 	

 - ‘Perturb’ the observations yk as follows	



	

 	

 	

 	

 yk →  zk = yk + δk 	



 	

 	

 where δk is an independent realization of the probability distribution which has produced εk.	



	

 	

 - Assimilate the ‘perturbed’ observations zk by variational assimilation	



	

 This  produces  Nens  (=30)  model  solutions  over  the  assimilation  window,  considered  as  making 
up a tentative sample of the conditional probability distribution for the state of the observed system 
over the assimilation window.	



	

 The  process  1-2  is  then  repeated  over  Nreal  successive  assimilation  windows.  Validation  is 
performed on the set of Nreal (=9000) ensemble assimilations thus obtained.       	
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Linearized Lorenz’96. 5 days	
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How to objectively evaluate the performance of an ensemble (or more generally probabilistic) 
estimation system ?	



	

 - There is no general objective criterion for Bayesianity	



	

 -  We  use  instead  the  weaker  property  of  reliability,  i.  e.  statistical  consistency  between 
predicted probabilities and observed frequencies of occurrence (it rains with frequency 40% in the 
circonstances where I have predicted 40% probability for rain).	



	

 Reliability  can  be  objectively  validated,  provided  a  large  enough  sample  of  realizations  of  the 
estimation system is available.	



	

 Bayesianity implies reliability, the converse not being true.	





aaaaa 

14 Linearized Lorenz’96. 5 days	





15 Nonlinear Lorenz’96. 5 days	





16 Nonlinear Lorenz’96. 5 days	





17 Nonlinear Lorenz’96. 5 days. Histogram of Jmin 	





18 



19 
Nonlinear Lorenz’96. 10 days. Histogram of Jmin 	
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Relative Operating Curve (area below the curve is measure of resolution) 
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- Results are independent of the Gaussian character of the observation errors (trials 
have been made with various parobability distributions)  

- Ensembles produced by EnsVar are very close to Gaussian, even in strongly nonlinear 
cases. 
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-  Comparison Ensemble Kalman Filter (EnKF) and 
Particle Filters (PF) 

 Both of these algorithms being sequential, comparison is fair only 

at end of assimilation window  
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Nonlinear Lorenz’96. 5 days. Diagnostics at end of assimilation window	
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Nonlinear Lorenz’96. EnKF. Diagnostics after 5 days of assimilation	
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Nonlinear Lorenz’96. PF. Diagnostics after 5 days of assimilation	
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EnsVAR. Diagnostics for 5-day forecasts	





30 EnKF. Diagnostics for 5-day forecasts	





31 
PF. Diagnostics for 5-day forecasts	
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RMS errors at the end of 5-day assimilations and 5-day forecasts 
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Ensembles obtained are Gaussian, even if errors in data are not 

Produces Monte-Carlo sample of (probably not) bayesian pdf 
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La suite ?	



	

 -  Mettre  en  œuvre  sur  modèle  physiquement  plus  réaliste  (QG,  Saint-Venant,  …)  et/ou 
contenant plus de nonlinéarités ?	



	

 - Comparaison avec d’autres algorithmes (IEnKS)  	



	

 - Cyclage et/ou chevauchement	



	

 - Minimisation dans l’espace instable	



	

 - Améliorations algorithmiques	



	

 	





 The End 
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