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Purpose of assimilation : reconstruct as accurately as possible the state
of the atmospheric or oceanic flow, using all available appropriate
information. The latter essentially consists of

» The observations proper, which vary in nature, resolution and accuracy,
and are distributed more or less regularly in space and time.

» The physical laws governing the evolution of the flow, available in
practice in the form of a discretized, and necessarily approximate,
numerical model.

»  ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes.
Although they basically are necessary consequences of the physical laws which govern the
flow, these properties can usefully be explicitly introduced in the assimilation process.



Both observations and ‘model’ are affected with some uncertainty = uncertainty on the
estimate.

For some reason, uncertainty is conveniently described by probability
distributions (don’t know too well why, but it works).

Assimilation is considered here as a problem in bayesian estimation.

Determine the conditional probability distribution for the state of the system,
knowing everything we know.

Jaynes, E. T., 2003, Probability theory: the logic of science, Cambridge University Press

Tarantola, A., 2005, Inverse Problem Theory and Methods for Model Parameter Estimation, Society
for Industrial and Applied Mathematics (http://www.ipgp.jussieu.fr/~tarantola/Files/Professional/Books/
InverseProblemTheory.pdf)



Data of the form

Z=FX+§, C~MM’S]

Known data vector z belongs to data space D, dimD = m,
Unknown state vector x belongs to state space X, dimX=n
I'known (mxn)-matrix,  unknown ‘error’

Then conditional probability distribution is

P(x|z) = N [x4, P4

where

x4 = (FTS'IF)'I I'Ts! [z— ul
Pa= (TSI}

Determinacy condition : rankl = n. Requires m > n.



Variational form.

Conditional expectation x* minimizes following scalar objective function, defined on state space X

EE€E X = A5 = D) [IE- w]"' STIE- (z-w)]

Variational assimilation, implemented heuristically in many places on (not too) nonlinear data
operators I

Pe=[027/02]"



Conditional probability distribution

P(x | z) = N[x4, P9
with

x4 = (FTS'ID'I rrstz- u]
Pe = (FT S—lr)-l

Ready recipe for determining Monte-Carlo sample of conditional pdf P(x | z) :
- Perturb data vector z according to its own error probability distribution
7z =z7=z4+08, 6~MN0,S]
and compute
x=TSITDTITS [z = ul

x‘@ s distributed according to N [xe, P



Ensemble Variational Assimilation (EnsVar) implements that
algorithm, the expectations x‘“ being computed by standard
variational assimilation (optimization)



Purpose of the present work

- Objectively evaluate EnsVar as a probabilistic estimator in nonlinear and/or non-Gaussian cases.

- Objectively compare with other existing ensemble assimilation algorithms : Ensemble
Kalman Filter (EnKF), Particle Filters (PF)

- Simulations performed on two small-dimensional chaotic systems, the Lorenz’96 model and
the Kuramoto-Sivashinsky equation



Experimental procedure (1)
0. Define a reference solution x,;” by integration of the numerical model
1. Produce ‘observations’ at successive times 7, of the form
yi=Hx, + &

where /, is (usually, but not necessarily) the unit operator, and ¢, is a random (usually, but not
necessarily, Gaussian) ‘observation error’.



Experimental procedure (2)
2. For given observations y,, repeat N, times the following process
- ‘Perturb’ the observations y, as follows
Y™ L=Vt O
where 0, is an independent realization of the probability distribution which has produced ¢,.
- Assimilate the ‘perturbed’ observations z, by variational assimilation

This produces N,  (=30) model solutions over the assimilation window, considered as making
up a tentative sample of the conditional probability distribution for the state of the observed system
over the assimilation window.

The process 1-2 is then repeated over N, successive assimilation windows. Validation 1is

rea

performed on the set of V,, ;,(=9000) ensemble assimilations thus obtained.
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The Lorenz96 model

@ Forward model

dri
dt
@ Set-up parameters :

© the index k is cyclic so that zx—N = T+ N = Tk.
©Q F = 8, external driving force.
© —x, a damping term.
©Q N = 40, the system size.
©@ Nens = 30, number of ensemble members.

1
° A
Q At = 0.05 = 6hours, the time step.
©Q frequency of observations : every 12 hours.
©Q number of realizations : 9000 realizations.

~ 2.5days, A ez the largest Lyapunov exponent.
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— ($k+1 - $k—2)wk—1 —xp+F for k=1,--.




I I | I | I |
0_1 | BN NN NN NN NN NN NN W NN BN NN NN NN

= = observation error std
m— M\CQN €ITOT -

0.09

error mean
raw assimilation error

0.08

0.07

0.06

errors

0.05

0.04

0.03

0.02 ! 1 1 ! I 1 I ! !
-5 -4.5 -4 -3.5 -3 -2.5 -2 -15 -1 -0.5 0

time(days)

Linearized Lorenz’96. 5 days



How to objectively evaluate the performance of an ensemble (or more generally probabilistic)
estimation system ?

- There 1s no general objective criterion for Bayesianity

- We use instead the weaker property of reliability, i. e. statistical consistency between
predicted probabilities and observed frequencies of occurrence (it rains with frequency 40% in the
circonstances where I have predicted 40% probability for rain).

Reliability can be objectively validated, provided a large enough sample of realizations of the
estimation system is available.

Bayesianity implies reliability, the converse not being true.
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4 ensemble optimal control, reference and observations enseqnoble optimal trajectories and their respective reference soluti
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EnsVar : the non-linear Lorenz96 model (10 days ~ 2 TU
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EnsVar : consistency

o
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Quasi-Static Variational Assimilation (QSVA)

0 Data Assimilation over [0 T]with T=N .dt = M. dt T
4D-Var over [0 1] starting from the observations

0 1
—_—

4D-Var over [0 21] starting from the minimizer found above
—_]
0 21

Repeat the rule

4D-Var over [0 T] starting from the minimizer found above

0 and set the minimum as absolute T
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EnsVar : the non-linear Lorenz96 model 10 days with
QSVA
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EnsVar : the non-linear Lorenz96 model 18 days with
QSVA
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EnsVar : observation frequency impact

Impact of the resolution

ROC diagram
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- Results are independent of the Gaussian character of the observation errors (trials
have been made with various parobability distributions)

- Ensembles produced by EnsVar are very close to Gaussian, even in strongly nonlinear
cases.
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- Comparison Ensemble Kalman Filter (EnKF) and
Particle Filters (PF)

Both of these algorithms being sequential, comparison is fair only

at end of assimilation window
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8 EnKF trajectories and respective reference solutions
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rank histogram
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ense{gble optimal trajectories and their respective reference solutions
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DA procedure .
Assimilation | Forecasting
method
EnsVAR 0.2193510 | 1.49403506
EnKF 0.2449690 | 1.67176110
PF 0.7579790 | 2.62461295

RMS errors at the end of 5-day assimilations and 5-day forecasts
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Weak constraint EnsVar

e define the objective function.

{(.1: — ;'Ub)TB_l(:E — wb)}

DO | =

Iz, 1,2, N=1,MN) =

—Z{ — Hy(:)) R (i — H; ))}+22m

© B background error covariance matrix and R observation error
covariance matrix.

@ (Q model error covariance matrix.
@ H : Rt 5 R°" observation operator.
Q@ x;, background state vector and y; observation vector at time t = ;.

@ 7: model error vector at t = ¢; with x(¢;) = M;.. ¢, , (z(ti_1)) +

o find the optimal control variable (zg?*, n7?*, nof*, - -- .n3¥*) and the
optimal trajectory z°Pt.

opt opt opt opt . )
('E s s TN )_ min 3('5777177721"' -”IN)
z,m1,m2, N EA

7= mtti(_ti—l (gﬁti_lﬁti_z"(gﬁt:ﬂ—h(mtﬁ—to (wgpt) Opt)+ Opt) +770pt )+

0. Talagrand & M. Jardak Optimization for Bayesian Estimation




Weak EnsVar : the Lorenz96 model 8 days
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| Summary _

@ Under non-linearity and non-Gaussianity the EnsVar is a reliable and

consistent ensemble estimator (provided the QSVA is used for long
DA windows) .

@ EnsVar is at least as good an estimator as EnKF and PF.

@ Similar results have been obtained for the Kuramuto-Sivashinsky
model.

Ensembles obtained are Gaussian, even if errors in data are not

Produces Monte-Carlo sample of (probably not) bayesian pdf

O - =
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EnsVar : Pros and cons _

@ Easy to implement when having a 4D-Var code
@ Highly parallelizable

@ No problems with algorithm stability (i.e. no ensemble collapse, no
need for localization and inflation, no need for weight resampling)

e Propagates information in both ways and takes into account
temporally correlated errors

@ Costly (Nens 4D-Var assimilations).
@ Empirical.

@ Cycling of the process (work in progress).

O F = = = Q¢
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La suite ?

- Mettre en ceuvre sur modele physiquement plus réaliste (QG, Saint-Venant, ...) et/ou
contenant plus de nonlinéarités ?

- Comparaison avec d’autres algorithmes (IEnKS)

- Cyclage et/ou chevauchement

- Minimisation dans I’espace instable

- Améliorations algorithmiques
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The End



