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Classical nonlinear filter with particle approximations



@ Let be X, € LL? with a dynamical equation

X1 = Fala(Xn) + Wais
where W,;1 is a Martingale process.
® The process X, is partially observed by the process Y, with an observation

equation
Yo =H(Xn) + Va

where V,, is a noise process with a known pdf G,

©®  The nonlinear filtering problem is the estimation of the conditional
probability distribution fj, = E[Xa| Y{o:n]

@ Using the Baye's decomposition, we get a sequential algorithm.

® For the general case, a particle approximation of the nonlinear filtering is
used.



@ Some definitions :
» The Markovian evolution : M,;1(x, dy) = P(Xpt1 € dy|Xn = x).

> A potential function : Gny1 such that Vx € C(K, F), 0 < Gpa(x) <1

v

The Bayes-Boltzmann-Gibbs transformation :

Vosaln)(e) = S ()

v

Update selection : Spi1,y,., (X, dy) such that 9Sny1,y = Vni1(n)
1. SIR : Spi1.9(x, dy) = Vpi1(n)(dy)
2. Genetic Algorithm :
Spetxs ) = Gt () + (1= Gosa () W) ()

v

The filtering Mc Kean kernel : Kpi1,p = Sn,pMnia



Filtering in Orthogonal Subspaces



Xn=Xi X2
Proj’ (F(Xn))=F'(X})+Nx
Yn=YJ\:H(X:1)+Vn

EZ



> Let (Q,F,(Ft)e>0,P) be a complete filtered probability space.

> Let be the polish space E, C L2 = E} @ E? endowed with the o-algebra £ and
a prehilbertian structure such that EX 1L E?

> Let be the random process X, = (X}, X2) where X} € E} and X? € E?

> We denoted the probability law of the state X, by 1, = 1} ® 72

> We assume that X, have the dynamical model :

Xn+1 =  Fpy1(Xn) + Wh
= Fopa(X3, X7) + Wa
= (Fr}Jrl(Xr}vXE) ) Fﬁﬂ(xr}axr%)) + Wh
» and we consider the following decomposition :

1,1 2,1
Frii(Xa, X2) Faia(Xa) + F, (X3

n+1 n+1,X2
F2 (XA X3 = FRAXH+F22 (X2
n+1( n» n) - n+1( n)+ n+1,X,}( n)

@  The Markovian transition kernel of the state Xn is

Mn+1((X1»X2)7 d(21722))
P(XL 1 € dzt[Xn = x) @ P(X2, 1 € dz2|Xn = x)

Mn+1 (X: dZ)



The selection kernel with blind orthogonal subspaces

© Let be the observation process Y = Y,:,l = H,,(ProjE: Xn) + Va
= Hy(Xn)+ Va

The selection kernel for blind orthogonal subspaces is

Snnn(x, d2) = S} 1 (x, dz*) @ n(d?)

Proof :
There is no observation on E,%, then the potential G, of the state X, which is defined
by the likelihood of y* given x! may be written G,(x) = G}(x}) and

(68 = [ Gy = [ GHxtymb(axt)

Then the selection kernel S, is

Gn(2)
1n(Gn)

Gi(2)

Snon (0 02) = TG

nn(dz) =

nh(d})@nR(dz?) = ST (x, de)@nd(dz?) W



The Markovian transition for blind orthogonal subspaces

Theorem

Using the general hypotheses and the previous definitions, it yields

i (5,89) = Mg,y WM ) = [ M3 dne (& o)

2
1F x:l_(x)

®  We recall the general dynamics
Xn+1 = (F,],'+1(X,],',X3) n+1(X1 X2)) + Wh
where we get :

Fr]1-+1(Xr]1-7X§) +1(X1)+ +1 Xl(Xz)

1,2 2,2
FRZO3) + F22 0 (X2)

n+1(X17X§)

® The effects of the orthogonal subspaces express themselves through a

parametered transition kernel.



First we defined the different kernels

a3t de) =
Mz,.

The Markovian transition for blind orthogonal subspaces

1 1,2
n+1(x ’df )Mn+1
. d)
nr1 P2 (x2 (&, )
+1 x1
and

(<, de?)

(€*, dy*)m>?
+1, x1 ( 2)
2 (x, dyt)

2 2
, d
ny1, P22 (x2 (€% dv%)
n+1,x
1,11 2,1 1,1
= M M
/51 niia (% ,det) +1F Ll 2)(5 ,dy™)
2 2 1.2 ( 2 42
, d) = / M3 (<t d ,d!
i (%, dy”) i (X )M i1, F X1("2)(§ Iy<)
with the initial definitions
My (et de®) P(FIACG) € detix] =)
2,1 1 1
M , d) P( X2, € dy*|Xn =
n+1F 1("2)(5 y +1 ly™ [ Xn = x,
1x
1,21
Mn+1(x ’dﬁ
M22

n+1
F
n+1, F?

n

(X‘):sl)
+1(X ) € d¢ |X1 = 1)
(€ ) P(X2a € dF1X0 = x A0 =€)
+1 x1
L o
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The Markovian transition for blind orthogonal subspaces

Using the general hypotheses and the previous definitions, it yields

Mnya(x,dy) = My, 1 (x, dyt )Mz, (x, dy?) = / M;h(xl’dﬁ)’v’z” 2,. . (& dy)
13 "+1’Fn+1,x1 %)

Proof :

The result is a direct calculation using the previous light definitions and the definition

of Mpt1 :

Mat1(x, dz) = P(X} 1 € dz|Xn = x) @ P(X2,; € d2%|Xn = x)



The McKean kernel according to blind orthogonal subspace

Theorem

The filtering McKean kernel Kny1,n,(x, dz) = / Snnn (X, d&)Mni1(€, dz) according
3

to the orthogonal subspaces is given by

1,1 32,1 1 1,2 72,2 2
K"+17"In (X? dy) = Sn,n,’_‘, Mn+1M,,+1,n’21,.1 (Xv dy ) ® Sn,n,l, Mn+1M,,+17,757_1 (Xv dy )
1 1 2 2

= Kn+1,'r],, (X7 dy ) ® Kn+1,n,, (X7 dy )

where we denote ”i iy
M2 =p2ME
n+1,n2 "In nt+1,F2 (o)

Proof :
The proof is only the combination of the previous results |

® Mi’ll 2 is called the novation®. The novation® is the feedback of the
orthogonal subspaces between themselves.
@ Note : If the two subspaces are observed, the McKean evolution have a shape like

a Rao-Blawellized particle filter.



The filtering algorithm according to orthogonal subspaces

i
51 7 ® 72 2
(E?)
7 ik
where are the predictor measures, are the filtered distributions and
A UH
i

the prediction before the novation® corrections.
=2
Un




The filtering algorithm according to orthogonal subspaces

» How to get an estimation of the Novatio

® 2,1
n® kernel M2 2
> How to get an mterpretation for the total prediction step
MLyt
n+1 n+1mn

» How to control the Novation® estimation error ?

u]
‘ Q
I
i
it



About the Novation® estimation



@ In order to suggest an estimation algorithm for the Novation®,
we begin with some remarks. First we assume that we have an
estimation algorithm for the Novation®.

» The Novation® process depends on 12 which is unreachable.

» Due to the dynamical structure, the Novation® estimation
algorithm have no other choice than extracts information from
the observation.

» Since the Novation® is a process, the information is, at the
first order, a conditional average given the observation.



> Have an estimation algorithm for the Novation® means that we have a random
process Nn(X}, Yn) such that for any § > 0

2,1
N1 (Xay1s Yor1) = F ooy X3 (XNl <6

. L. 2,1 2.1
and there is a transition kernel C; ) Mn+1,n,,

> \We assume that the Novation® is p-integrable and it exists a p-integrable
measure p such that

11 2,1 1,1 yr2,1
[Mp1Chiiy — My M ntl, 772” < Alull

|| @ is the Total Variation norm.

» Using this little assumptions, we have proved that we may control the LP errors
of the Novation® estimation algorithm.



Estimation of the Novation® in a particular case



® We assume that the Novation® is Gaussian.

@ It means that we have a spatial average to determine and a
covariance.

® This is the frame of the Particle Filter with imperfect model.

® We suggest to learn the conditional average by a variational
minimization.

® The error covariance matrices used in the minimization are
learned .... somewhere else ...



Proposition
We assume that the observation function H is h-Lipschitz, the
dynamical noise W, follows a N'(0,0%,) and the observational
noise V,, is N'(0,0%,) distributed. We denote P, the error
covariance matrix. Then, for any measure v, it yields :

oMyt — vMpIMLL LI < NS, (L4 1= B2 Poog, + Pao?) |



® How to learn the P, error covariance matrix ?

v

For low dimension systems (< some thousands) — use the
well known Island Particle Method.

» For a Gaussian and non-linear world — use the well known
Variational Interacting Fllter ( interaction through an importance resampling) .

» For a Gaussian and non-linear world in very high dimension —
use the well known Unscented/Ensemble Variational Filter.

» Other methods ....



@  For this particular case the non linear filter is approximated by a particle filter
including a variational minimization which learn the blind subspace feedback average.

@  We consider the particle system (A,’;il)i’\il, initialized, conveyed and filtered since
the step n — 1.

@ The variational minimization is performed on the mean of the predicted particles
5(,’, and is used to get the corrected prediction particle set 7:,.

> Then, for the time step n, the algorithm is :

i Prediction {,j Mean ¢, VarMini ~; Debiasing i Selection {
i X Xn Xn % X

n

ERS



A first numerical application of the Novation® estimation



Total Process Process in Orthogonal Subspace

Filtered Process Height of the floating point

Dimensions : 1200 Nb of Particules : 50



@ The average learning step reduces harshly the number of
necessary particles.

® Indeed the efforts lay in the learning of the error covariance
matrices.

@ Numerical example : 2 Layers Quasi-Geostrophic Model, 10
particles, dimension 3000.

®  Why so few particles ?



@ We suggest a work on the structure functions :

For two points a and b we compute the covariance

P =BG | V)
= 3,%’3"’ EY model structure function
+ §27Lab Novation structure function
+ 2.582Vab Coyariances novation-model
. . ~<l,a,b <Ll,a,b .
Then, it exists a constant C2 such that |5, %" — S,%’a’b” < C2 where S;)%" is the

estimation of S,{ b using the Novation estimation algorithm.

Moreover if the Novation estimation error goes to zero, C2 goes also to zero.



® Then there is no more question of dimension ... or almost no more.

® Indeed for a set of d points X194 we may write
P(Xyd € dxt vy = /IP’()?,}“" € dx 9 yld X1 = 2)P(X} € dz| Y}?)
P(XZ¢ € dx® 9| Y1 Xy = xM)P(X! € dx'|Y))

And if the structure functions are exactly determined, it yields
- d -
P(Xa? € a9y d) = @5, P(XY € dx|Y)
i=2
@ Then a reduce set of particles is necessaty to learn P(X! € dx|Y1).

© In nominal conditions, the structure functions are not entirely determined and a

bigger set of particles is necessary...



Thanks for your attention



©  We assume that the total state is x, and we denote zn = —N,. Then xn + zn is
the prediction in E' without Novation correction.

p(xn | ¥io,n])
_ p(yn | Xm}’[o,n—l])P(Xn | .y[O,n—l])
p(yn | )’[o,n—1])
p(yn | xn, ¥0,n—1])
= o1l p(xn | Xn + zn, ¥j0,n—1])P(xn + 2n | ¥jo,n—1])
p(yn | ¥jo,n—1)

p(yn | Xn, Y[O,nfl])

P(Xn | Xn + Zn:Y[O,nfl])
P(}/n | y[O,nfl])

(/p(xn + 2n | Xn—1,¥jo,n—1])P(Xn—1 | ¥jo,n—1]))
and

> iin = p(Xn|¥jo:n—1])s TTn = P(Xn + Zn|¥[0,n—1]) €t fin = P(xn|¥[0,n),
> Mp = p(xn | Xn—1,¥0,n—1]).
> M, = M,%’IC,%’I avec M,E‘l = p(xn + zn | x,,,l,y[o’,,_l]) et

Cot = p(xn | xn + Zn, Y[0,n—1])-
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