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1. Introduction 

Climate change phenomena, such as global warming and urban heat island effects, is progressing [1]. Mitigation 
and adaptation are the two approaches for coping with global warming. For mitigation in the construction sector, 
buildings are required to improve the energy efficiency to reduce CO2 emissions, which is the main cause of global 
warming. Further, the adaptation of building designs to climate change is required to continue developing 
comfortable indoor environments in the future. During the design process, energy simulations are often used to 
evaluate the indoor thermal environment and energy consumption of buildings [2]. In these simulations, the regional 
weather data known as typical weather data or design weather data, usually based on current or past weather 
events, are commonly used [3]. However, most buildings have existed for several decades, during which the climate 
conditions have gradually changed. Therefore, the development of weather data for the future and the assessment 
of the impact of climate change on buildings have become very important for both mitigation and adaptation 
purposes [4, 5]. 

We have attempted to construct the near-future weather data for architectural design using numerical 
meteorological models. Climate data projected by Global Climate Models (GCMs) are available for future weather 
data. Although GCMs can predict long-term global warming, they cannot illustrate the details of the local 
phenomena due to their coarse grid resolution (~100 km). Therefore, we input the GCM data to a Regional Climate 
Model (RCM) as the initial and boundary conditions. Then, the data is physically downscaled with the RCM. This 
process is known as dynamical downscaling [6, 7]. The RCM uses nested regional climate modeling and can 
provide high-resolution (~1 km) local climate data. Weather predictions made through this method is expected to 
represent global climate change and local phenomena such as urban heat islands [8, 9].  

Similar previous studies on producing future weather data and assessing the effect of climate change on building 
energy consumption have been conducted. For example, Hacker developed a method for producing future weather 
data, and this method is known as the morphing method [10]. Crawley also produced future weather data from 
existing typical weather data by using the morphing method and calculated the impact of climate change on a small 
office building [11]. In the morphing method, future weather data is produced by morphing current observation data 
using the difference between current and future weather conditions. Therefore, daily weather disturbance of the 
future weather data obtained through the morphing method is based on that of current observation. Weather 
disturbance is an important component of weather data for building energy simulations, particularly for estimating 
the peak demand. However, future weather data obtained through the morphing method could not represent 
disturbance predicted by the GCM. On the other hand, the daily disturbance predicted by the dynamical 
downscaling method is based on future climatic conditions predicted by the GCM. This is one of the advantages of 
our method over the morphing method. 

In this study, we conducted climate simulations in January and August for the present and future. First, we 
dynamically downscaled the current climate data projected by MIROC4h for the current period (2001-2010) to 
confirm the reproducibility of the current climate conditions. Next, we produced future weather data by downscaling 
the MIROC4h for the near-future period (2026-2035) and confirmed the climate change reproducibility of the 
weather data. The output from weather and climate models includes statistical error or bias, which becomes 
problematic when the output is directly used for the building energy simulations. Thus, we corrected the bias of the 
weather data using the statistical values of observations and WRF results, and constructed a prototype of future 
weather data for building energy simulations. We conducted the building energy simulations using these prototypes 
to assess the impact of climate change on building energy loads during summer and winter.  
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2. Dynamical Downscaling 

2.1 Analysis Conditions  

We employed the Model for Interdisciplinary Research on Climate version 4 (MIROC4h) as the GCM. MIROC4h 
was developed by the Center for Climate System Research, the National Institute for Environmental Studies (NIES), 
and the Frontier Research Center for Global Change. MIROC4h reproduces global warming at a horizontal scale 
of approximately 60 km [12, 13]. For the current (2001–2010) simulations, we used the output of MIROC4h 
projected from 1981. For the near-future (2026–2035) simulations, we used the output of MIROC4h projected from 
2006. Future climate conditions were projected by the GCM, assuming the concentrations of warming-effect gases, 
such as CO2, will change in the future; these projected conditions are known as scenarios. The scenario adopted 
by MIROC4h simulations is RCP4.5 [14, 15] defined by the Intergovernmental Panel on Climate Change (IPCC) 
[1]. Based on the warming intensity, the RCPs have four representative pathways, RCP8.5, RCP6.0, RCP4.5 and 
RCP2.6, mainly because of the differences in the greenhouse gas concentrations, and RCP4.5 is the third strongest 
scenario. There were not many differences in radiative forcing among RCPs for the near future, which was the 
focus of this study. In the projection by MIROC4h based on RCP4.5, the surface temperature (at 2 m) in Tokyo 
increased by 1.05°C from the current to the near future, and surface absolute humidity increased by 0.00126 kg/kg. 

We used the Weather Research and Forecasting (WRF) model, version 3.4, as the RCM [16]. The WRF model 
was mainly developed by the National Center for Atmospheric Research and is commonly used for local climate 
studies. We used U.S. Geological Survey (USGS) 24-category land use data for domain 1, 2, 3 and National Land 
Numerical Information for domain 4, which provides a more realistic data for the urban areas. Fig.1 shows the 
nesting regions of the WRF. The target areas in this study are the Kanto region in Japan and particularly Tokyo (in 
this study, Tokyo means Otemachi, which is located center of the Tokyo) along with its surrounding area. We used 
four levels of nested regional climate modeling, in which the first and fourth levels have horizontal spatial resolutions 
of 54 km and 2 km, respectively. We used the Noah land surface model (Noah LSM) as a land physics scheme. 
The Noah LSM [17] requires soil temperature and humidity, which are not included in MIROC4h daily output or 
shorter. Thus, we also complementally used the National Centers for Environmental Prediction (NCEP) Final 
Operational Global Analysis (FNL) data [18] for soil temperature and humidity for the simulations by using 
MIROC4h. The weather component list of MIROC4h data are presented in Table 1 and the applied physics scheme 
is listed in Table 2. Analysis is conducted during January 1–31 and August 1–31 in each year. Two weeks spin up 
run was carried out in each simulation. Please refer to the previous report for more detailed analysis conditions 
[19]. 

 

 
Fig.1 Nesting region 

 
Table1 Weather components used as initial and boundary conditions in WRF simulation 

Longitude, Latitude 0.5625º 
Time 6 h 
Weather elements at 17 
layers※ 

Temperature, specific humidity, wind velocity, geopotential height,  

Surface Surface temperature, sea surface pressure, sea surface temperature 
※17 layers (1000, 950, 900, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, 10 [hPa]) 

 
Table2 Physics scheme of WRF 

Cumulus parameterization Domains 1 & 2: Kain-Fritsch; Domains 3 & 4: none 
Microphysics WRF single-moment six-class scheme 
Planetary boundary layer Yonsei University scheme 
Longwave radiation RRTM scheme
Shortwave radiation Dudhia scheme 
Land surface Noah land surface model (Noah LSM)
Sea surface update On (6-h interval) 
Nudging Off 
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2.2 Reproducibility of Current Climate Conditions  

We compared the statistical value of downscaled current (2001–2010) output of MIROC4h with that of 
observations (OBS) to confirm that the current downscaled MIROC4h can reproduce current climate conditions 
presented by OBS. We named the simulation for current climate conditions as Case 1 and that for future climate 
conditions as Case 2. Table 3 shows the monthly average of the ten-year mean of each weather component for 
January and August. The temperature differences (at 2m) between Case 1 and OBS were 0.54°C and 1.84°C in 
August and January, respectively. The monthly average water vapor pressure (at 2 m) in Case 1 was 1.19 hPa 
lower than the OBS in August and 0.37 hPa higher than the OBS in January. Regarding radiation, the results of 
Case 1 were overestimated, compared with OBS in both January and August. If the spatial representativeness of 
the observation data was not taken into account, the difference between Case1 and OBS was due to statistical 
errors, or bias of climate/weather model. 

 
Table 3 Average of each weather component in Tokyo in August and January  

(Horizontal solar radiation and atmospheric radiation are monthly mean sun integrated value) 
 Temperature [°C] Water vapor 

pressure [hPa] 
 Horizontal solar 
radiation [MJ/m2]

Atmospheric 
radiation [MJ/m2] 

Wind velocity 
[m/s] 

OBS (Aug) 27.5 25.1 15.5 - 3.13 
CASE1(Aug) 28.1 (0.54) 23.9 (-1.19) 19.5 (3.96) 35.8 3.72 (0.60) 
CASE2 (Aug) 29.2 (+1.11) 25.7 (+1.81) 19.5 (-0.05) 36.6 (+0.94) 3.76 (+0.03) 
OBS (Jan) 6.26 4.33 9.31 - 3.28 
CASE1 (Jan) 8.10 (1.84) 4.69 (0.37) 10.6 (1.32) 22.4 3.90 (0.62) 
CASE2 (Jan) 8.70 (+0.60) 4.89 (+0.20) 10.6 (-0.02) 22.6 (+0.17) 3.79 (-0.11) 

 
 Next, we confirmed the reproducibility of regional characteristics obtained by dynamical downscaling. Fig.2 

shows the monthly averaged temperature at 2m daily change over ten years in each three cities, Tokyo (35.9°N, 
139.76°E), Tsukuba (36.06°N, 140.12°E), and Kumagaya (36.15°N, 139.38°E). Considering both the results of 
Case 1 and OBS, the largest amount of diurnal temperature range was in Kumagaya, followed by Tsukuba and 
Tokyo. The reproducibility of the regional characteristics by dynamical downscaling was confirmed.  

 

Fig.2 Ten years averaged daily temperature change at Tokyo, Tsukuba, and Kumagaya for current 
climate conditions (2001-2010) 

 

2.3 Changes in Weather Components between the Present and Future  

The climate information projected by MIROC4h takes into consideration climate change phenomena such as 
global warming. Therefore, the weather data obtained by the downscaling of MIROC4h data is also expected to 
reproduce climate change. We dynamically downscaled future (2026–2035) weather data projected by MIROC4h 
(Case 2) and compared the monthly average of the ten-year mean for Case 1 and Case 2 in Table 3. The monthly 
average temperature increases by 1.11°C and 0.60°C August and January, respectively. The monthly average 
water vapor pressure increases by 1.81hPa in August and 0.20hPa in January. Regarding both the temperature 
and water vapor pressure, the difference between Case 1 and Case 2 in August is higher than in January. With 
regard to horizontal atmospheric radiation, monthly mean sun integrated value increases by 0.94MJ/m2 in August 
and 0.17MJ/m2 in January. Solar radiation and wind velocity do not change significantly between Case 1 and Case 
2.  

 

3. Constructing Prototype of Future Weather Data 

As described in section 2.2, the outputs of the weather and climate models have unique bias for each model, 
including the coarse resolutions and inaccuracy of the parameterization. Therefore, bias correction is required when 
directly using the output of weather and climate models as practicable weather data for building energy simulations. 
In this study, we corrected the biases of temperature, humidity, and radiation projected by the GCM and RCM. The 
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one-hour interval temporal weather data Xୡ of temperature and humidity was corrected using equation (1), which 
uses the average Xୡതതത and the standard deviation σୡ of WRF results, and the average X୭ୠୱതതതതതത and standard deviation 
σ୭ୠୱ of OBS. In equation (2) for Case 2, the climate change term ሺXഥ െ Xୡതതതሻ was added to equation (1). With regard 
to radiation, we used equations (3) and (4), which use the ratio X୭ୠୱതതതതതത/Xୡതതത of the average of Case1 to that of OBS.  
 

Xୡ,୫୭ୢ୧ ൌ X୭ୠୱതതതതതത 
ౘ౩
ౙ

ሺXୡ െ Xୡതതതሻ          (1) 

X,୫୭ୢ୧ ൌ X୭ୠୱതതതതതത  ሺXഥ െ Xୡതതതሻ 
ౘ౩
ౙ

ሺX െ Xഥ ሻ     (2) 

Xୡ,୫୭ୢ୧ ൌ
ଡ଼ౘ౩തതതതതതത

ଡ଼ౙതതതത
Xୡ                (3) 

X,୫୭ୢ୧ ൌ
ଡ଼ౘ౩തതതതതതത

ଡ଼ౙതതതത
X                (4) 

 

4. Building Energy Simulation for Near-Future Data 

4.1 Building Energy Simulation Conditions  

We conducted building energy simulations in August and January for the current period (2001-2010) and near-
future period (2026-2035). We used the TRaNsient SYstem Simulation Tool (TRNSYS17), which is a dynamic 
energy simulation software package [20]. The bias-corrected weather data simulated by the WRF (WD) was used 
as the input weather data. The target was a two-story detached house model IBEC defined as a standard Japanese 
house for building energy simulation (Fig.3). The thermal property of the house is shown in Table 4. The location 
was assumed to be Tokyo. The living room and dining kitchen (LDK), bedroom, and two children’s rooms required 
air conditioning, and the schedule of air conditioning is shown in Table 5. The rate of general ventilation was 0.5/h. 

 

 

a) First floor b) Second floor 
Fig.3 Plans of the model house (the standard house model in Japan) used in the building energy 

simulation 
 

Table 4 Thermal property of the model house 
Component Heat transmission 

coefficient [W/m2K] 
Solar absorptance 
[-] 

Convective heat transfer coefficient 
[W/m2K] 

External wall 0.385 0.8 3.05 (indoor),  17.7 (outdoor) 
Roof 0.294 0.8 3.05 (indoor),  17.7 (outdoor) 
Window 5.72 0.875 (Solar heat 

gain coefficient) 
3.05 (indoor),  17.7 (outdoor) 

 
Table 5 Air conditioning setting 

a) Cooling 
ROOM Preset temperature [°C]/ 

Relative temperature [%] 
Schedule of air conditioning 

LDK 27 /60 6:00–10:00, 12:00–14:00, 16:00–24:00 
BEDROOM 27 (sleep 28) /60 (sleep 23:00-7:00) 
CHILD ROOM 1  27 (sleep 28) /60 (sleep 00:00–7:00),20:00–21:00,22:00-24:00 
CHILD ROOM 1  27 (sleep 28) /60 (sleep 00:00–7:00),18:00–19:00,21:00–23:00, 

(sleep 23:00–24:00) 
b) Heating 

ROOM Preset temperature [°C] Schedule of air conditioning 
LDK 20 6:00–10:00, 12:00–14:00, 16:00–24:00 
CHILD ROOM 1  20 20:00–21:00, 22:00–24:00 
CHILD ROOM 1  20 18:00–19:00,21:00–23:00 
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4.2 Estimation of the Impact of Climate Change on the Monthly Heat Load  

Table 6 shows the monthly heat load in all the rooms in August and January for the ten-year mean. In August, 
the sensible heat load increases by 13%, latent heat load increases by 19%, and total heat load (sensible and 
latent heat load) increases by 14% from current (WD_Aug 2001-2010) to future (WD_Aug 2026-2035). In January, 
the sensible heat load decreases by 9% from current (WD_Jan 2001-2010) to future (WD_Jan 2026-2035). Climate 
change has increased the energy demand in summer and has decreased in winter. The sum of the total heat load , 
both in August and January, increases by 8% from current to future weather data. 

 
Table 6  Monthly heat load at all rooms in August and January for the ten-year mean 

a) August 
Input weather data Sensible heat load 

[MJ/month] 
Latent heat load 

[MJ/month] 
Total heat load  
[MJ/month] 

WD_Aug (2001-2010) 2.55×103 6.87×102 3.23×103 
WD_Aug (2026-2035) 2.88×103 (113%) 8.18×102 (119%) 3.70×103 (114%) 

b) January 
Input weather data Sensible heat load [MJ/month] 
WD_Jan (2001-2010) 1.25×103 
WD_Jan (2026-2035) 1.14×103 (91%) 

 

4.3 Estimation of the Impact of Climate Change on Maximum Heat Load  

We assessed the impact of climate change on the maximum heat load. The maximum heat load is defined as 
the topmost 0.5% among the heat loads for 10 years (7440hours). Table 7 shows the maximum heat load of the 
present and future, and Fig.4 shows the frequency of sensible heat load and exceedance probability. In August, 
the maximum sensible heat load increases by 2%, maximum latent heat load increases by 9% and maximum 
total heat increases 2% from current to future weather data. In January, the maximum sensible heat load 
decreases by 6% from current to future weather data. The impact of climate change on the maximum heat load 
(2%) will be smaller than that on the mean monthly heat load (14%). 
 

Table 7 Maximum heat load in August and January for 10 years 
a) Summer 

Input weather data Sensible heat load [kW] Latent heat load [kW] Total heat load [kW] 
WD_Aug (2001-2010) 3.35 1.12 3.79 
WD_Aug (2026-2035) 3.42 (102%) 1.24 (109%) 4.14 (102%) 

b) Winter 
Input weather data Sensible heat [kW] 
WD_Jan (2001-2010) 2.61 
WD_Jan (2026-2035) 2.46 (94%) 

 

a) August b) January 
Fig.4 Frequency of sensible heat loads for 10 years and exceedance probability at all rooms 

(Solid line and dashed line shows frequency and exceedance probability, respectively) 
 

Conclusions 

In this study, we assessed the impact of climate change on the building energy demand of a two-story detached 
house in Tokyo using near-future weather data directly by using a dynamically downscaled output from the 
MIROC4h. Because of global warming, building energy demand increases in summer and decreases in winter. 
Under such conditions, the sum of the total heat load in August and January increases 8% from current to future 
simulations. In addition, we assessed the impact of climate change on the maximum heat load. The maximum heat 
load increases by 2% in August and decreases by 6% in January. The impact on the maximum heat load is smaller 
than that of the mean monthly heat load. The impact of climate change on maximum heat load, which was assessed 
in this study, is difficult to assess using the existing future weather data by the morphing method because the daily 
disturbance of the future weather data is based on current observations. 
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For future work, by using the ensemble average method on several GCMs output, responsibility should be 
enhanced and the band of the predictions should be presented. Urban change can be considered at the mesoscale 
level (a few kilometers) using the dynamical downscaling method, which is one of the merits of our method. 
However urban change was not considered in this study. If urban growth intensifies, energy consumption for cooling 
would increase because of the heat island effect. However, accurate estimation of future urban condition is difficult. 
When attempting to create future weather data considering urban change, we must suggest possible future urban 
scenarios. This task is a challenge for future studies. 
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