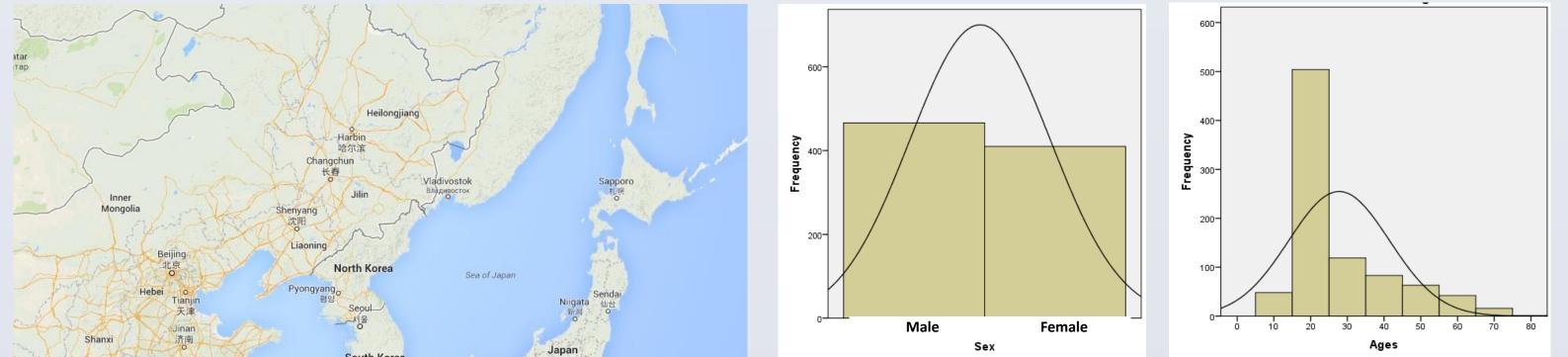

Climatic Effects on Human Thermal Comfort: Preliminary Survey in Korea

Sookuk Park

Research Institute for Subtropical Agriculture and Animal Biotechnology, SARI, Horticultural Science, College of Applied Life Science, Jeju National University, 102 Jejudaehakno, Jeju, 690-756, Republic of Korea

sooland@jejunu.ac.kr

Climatic effects on outdoor human thermal comfort are one of the most important considerations in urban and landscape planning and design. Several human thermal sensation and comfort models were developed, i.e. COMFA, MENEX, OUT-SET*, PMV, PET, PT and UTCI. However, a few studies for the comparison between different climatic zones have been conducted (Cohen et al., 2013; Lin and Matzarakis, 2008; Matzarakis and Mayer, 1996; Omonijo et al., 2013). Moreover, how seasonal climatic factors such as air temperature (Ta), wind speed (u), relative humidity (RH) and solar radiation (SR) affect human thermal sensation and comfort has never been studied before.



This study investigated seasonal effects of four climatic factors (Ta, u, RH and SR) on human thermal sensation and comfort with surveying in Korea. Also, Korean human thermal sensation levels in PET were compared with previous studies.

MATERIALS AND METHODS

The survey was conducted in summer, fall and winter in 2012-2013 at university campuses, downtown and parks of southern Korean cities, Changwon and Daegu, in 9 times between 12:00 and 15:00 on clear days (Fig. 1). The total participants were 876 people (male, 53.2 %; female, 46.8 %) (Fig. 2), and the survey form was prepared using ISO 10551. In the survey, five major questions were asked to participants about thermal environment: perceptual, affective evaluation, thermal preference, personal acceptability and personal tolerance with the four climatic effects on the questions. Also, four important microclimatic factors for estimating human thermal sensation were also collected in situ: Ta, u, RH and short- and longwave radiation (Table 1).

The Ta was 17.2-23.9 °C in fall, 4.6-6.5 °C in winter, 27.2-29.5 °C in early summer and 33.6-34.3 °C in summer. *RH* was 26.3-42.6 % in fall, 18.4-38.9 % in winter and 45.1-53.3 % in early summer and summer. *u* was around 1.0 ms⁻¹ in all the seasons (Table 2). Radiation varied by the season and location.

mu	uch warmer	warmer	a little warmer	neithe	r warmer	nor cooler	slight	ly cooler	cooler	much cooler
	3	2	1		0			-1	-2	-3
prefer much higher/stronger neutral prefer much lower/we								n lower/weaker		
-	air tempera	iture	3	2	1	0	-1	-2	-3	3
	wind veloci	ty	3	2	1	0	-1	-2		3
	air humidity	y	3	2	1	0	-1	-2	-;	3
	solar radiat	ion	3	2	1	0	-1	-2	-	3

How do you judge t	his environment on	a personal level)?	
clearly acceptable	just acceptable	just unacceptable	

/	J	J			
2	1		-1	-2	
	clearly acceptable			clearly unacceptable	
 air temperature 	2	1	-1	-2	
 wind velocity 	2	1	-1	-2	
 air humidity 	2	1	-1	-2	
 solar radiation 	2	1	-1	-2	

☐ Is it?	
----------	--

perfectly tolerable slightly difficult to tolerate	e fairly difficult to tolerate v	very difficult to tolerate intolerable
--	----------------------------------	--

	0	-1		-2		-3	-4
	perfe	ctly tolerable				intolerable	9
•	air temperature	0	-1	-2	-3	-4	
•	wind velocity	0	-1	-2	-3	-4	
	air humidity	0	-1	-2	-3	-4	
	solar radiation	0	-1	-2	-3	-4	

Table 3. Correlation betweenvariables		Sex	Age	PET (°C)	UTCI (°C)	Perceptual	Affective evaluation	Thermal preference	Personal acceptability	Personal tolerance
[*. Correlation is significant at	Sex	1	014	018	033	.008	.034	.029	.013	.024
the 0.05 level (2-tailed);	Age		1	070 [*]	113***	.036		.120 ^{**}	.218 ^{**}	.196 ^{**}
. Correlation is significant at the 0.01 level (2-tailed)]	PET (°C)			1	.980	.665**	498 **	679 ^{**}	302**	320**
the 0.01 level (2-tailed)]	UTCI (°C)				1	.673	550**	705		359**
	Perceptual					1	464**	735 ^{**}	267**	327**
	Affective evaluation						1	.573**	.568**	.574**
	Thermal preference							1	.393**	.405**
	Personal acceptability								1	.602**
	Personal tolerance									1

Figure 2. Frequencies of participants' sexes and ages

Table 1. Instruments for microclimatic data								
	Instruments							
Radiation	CNR4 Net Radiometer							
Air temp. and Relative humidity	HMP155A	Campbell Scientific Inc.						
Wind speed and direction	Met One 034B-L Windset							

Figure 1. Study sites: • Changwon, • Daegu

Table 2. Seasonal study sites and microclimatic factors

		Season									
			Fall	Fall		Winter		Early summer		nmer	
		Changwon Univ. campus (Oct. 18)	Changwon downtown (Oct. 19)	Changwon Yongji park (Oct. 21)	Changwon downtown (Jan. 18)	Changwon Yongji park (Jan. 19)	Changwon downtown (June 6)	Changwon Yongji park (June 5)	Kyeongbook Univ. (Aug. 15)	Kyeongbook Univ. (Aug. 16)	
Air te	emperature (°C)	17.2±0.8	20.6±0.7	23.9±0.9	4.6±0.8	6.5±0.6	29.5±0.7	27.2±1.6	33.6±0.6	34.3±0.9	
Relat	ive humidity (%)	26.3±1.2	42.6±2.8	40.0±2.9	18.4±1.9	38.9±1.1	45.8±3.3	53.3±3.4	47.7±1.7	45.1±2.8	
Win	nd speed (ms ⁻¹)	2.1±1.0	0.4±0.3	0.4±0.3	0.6±0.3	1.3±0.7	1.1±0.5	0.8±0.5	1.6±0.6	1.4±0.5	

RESULTS AND DISCUSSIONS

Ta was shown as the most effective climatic factor in all five major questions, which was between the lowest 59.2 % of correlation (R) in winter in the perceptual and the highest 79.7 % in all seasons in the affective evaluation (Fig. 3). SR was the second effective one, around 40-60 % of R. People thought SR was a very effective factor in summer but less important in winter. The effects of RH and u were thought more important in winter than in summer and fall.

Table 4. Comparison of thermalsensation PET ranges between
previous studies and Koreans
[¹ Matzarakis and Mayer (1996);
² Cohen et al. (2013);
³ Lin and Matzarakis (2008)
⁴ Omonijo and Matzarakis (2011)
and Omonijo et al. (2013)]

Thermal consetion	PET range									
Thermal sensation	Western/Middle Europe ¹	Tel Aviv ²	Taiwan ³	Nigeria ⁴	Korea					
Very cold										
	4	8	14	11	17					
Cold										
	8	12	18	15	18					
Cool										
	13	15	22	19	19					
Slightly cool										
	18	19	26	23	21					
Neutral										
	23	26	30	27	25					
Slightly warm										
	29	28	34	31	27					
Warm										
	35	34	38	36	34					
Hot										
	41	40	42	42	40					
Very hot										

CONCLUSIONS

Universally applicable human thermal sensation or comfort models cannot exist because of different human body area factors, physical aspects (e.g., clothing and metabolic rate), physiological aspects (e.g., sweating rate) and psychological aspects (e.g., experience and expectation). They should be modified for each climatic or cultural zone when used to assess the local effects of specific planning options. Therefore, human biometeorologists/bioclimatologists and urban planners have to make an effort to create their own thermal sensation and comfort models applicable to their history, climate and culture.

The PET had high Rs with the results of the perceptual and the thermal preference, 66.5-67.9 % (Table 3). Also, the Rs between the perceptual and the thermal preference and between the personal acceptability and the personal tolerance were high, 73.5 % and 60.2 %, respectively. Koreans' neutral range was 21-25 PET °C and thermal acceptable range was 8-26 PET °C when 5 thermal sensation levels (warm, slightly warm, neutral, slightly cool and cool) were included (Table 4). Moreover, Koreans' PET ranges for the heat stresses were very similar with those in Tel Aviv.

REFERENCES

- Cohen P, Potchter O, Matzarakis A. 2013. Human thermal perception of Coastal Mediterranean outdoor urban environments. Applied Geography 37: 1-10
- Lin TP, Matzarakis A. 2008. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52: 281-290

Matzarakis A, Mayer H. 1996. Another kind of environmental stress: thermal stress. WHO News 18: 7-10 Omonijo AG, Matzarakis A. 2011. Climate and bioclimate analysis of Ondo State, Nigeria.

Meteorologische Zeitschrift 20(5): 531-539

Omonijo AG, Adeofun CO, Oguntoke O, Matzarakis A. 2013. Relevance of thermal environment to human health: a case study of Ondo State, Nigeria. Theor Appl Climatol 113: 205-212

ACKNOWLEDGEMENTS

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012R1A1A2043863).