Impacts of Urban Morphology and Climate Change on Urban Heat Island

over Beijing Metropolitan Area: Compact- Versus Dispersed-city

Long Yang^{1,2,3}, Dev Niyogi¹, James Smith³, Mukul Tewari⁴, Daniel Aliaga², Fei Chen⁴, Fuqiang Tian², Guangheng Ni²

(1. Purdue University; 2. Tsinghua University; 3. Princeton University; 4. NCAR)

NCAR 11×1

1. ABSTRACT

BACKGROUND: Cities evolve in both size and shape (spatial pattern).

OBJECTIVE: In this study, we examine the thermal environment (e.g., urban heat island) over Beijing metropolitan area with projected spatial patterns of urban coverage (compact-city and dispersed-city); we evaluate relative contributions of future climate and urbanization to regional warming; **METHODS:** We rely on state-of-art atmospheric modeling tools and in-situ observations to evaluate the range of dynamical and thermal behaviors under different scenarios (with both spatial patterns of urban coverage and climate forcing considered). **RESULTS**: The urban core region is cooler in the dispersed city and the urban-rural contrast is also narrower. However, Dispersed city produces a larger warming effect to regional climate than compact city. In terms of future impacts, the climate change signature is the dominant forcing and therefore dispersed city scenario appears to have an advantage. Note that the traffic patterns are not being considered in this assessment. **CONCLUSIONS:** Other mitigation strategies should be employed along with city designs to enhance urban adaptability to future climate change.

4. EXPERIMENTS SETUP

Both impacts of urbanization and future climate change are considered:

For urbanization: compact-city (Fig. 3c) versus dispersed-city (Fig. 3d), both scenarios have the same urban coverage (twice as large as the current urban coverage);

For future climate change: 2050s climate forcing from CCSM (RCP 8.5);

6. RESULTS: UHI FOOTPRINT-HORIZONTAL

Definition of UHI footprint-horizontal: Horizontal spatially averaged 2m temperature over and beyond the extent of urbanization.

NOTE 2: (a) Dispersed-city scenario produce a larger regional warming effect (by 0.1 K on average) than compact-city scenario; (b) urban core region is cooler (by 0.15 K) in dispersed-city scenario than compact-city; (c) The difference between two urban

2. CASE DESCRIPTION

Time period: 1st July-10th July, 2010

Figure 3. (a) Topographic features around Beijing; (b) current urban coverage; urban coverage for (c) compact-city scenario and (d) dispersedcity scenario. Urban boundaries are highlighted by black solid curves .

Table 2. Configuration of Experimental Runs (No.1 is control simulation)

NO.	Urban scenario	Climate Forcing	
1	Current	Current (2010)/ERA-interim	
2	Compact-city	Current (2010)/ERA-interim	
3	Dispersed-city	Current (2010)/ERA-interim	
4	Current	Future (2050s)/CCSM RCP8.5	
5	Compact-city	Future (2050s)/CCSM RCP8.5	
6	Dispersed-city	Future (2050s)/CCSM RCP8.5	

Figure 6. UHI footprint (horizontal) over different scenarios

6. RESULTS: UHI FOOTPRINT-VERTICAL

(major regional heat wave);

Average 2m temperature during 4thJuly-6th July exceeds 33 degree C (Fig. 1);

Figure 1. Time series of 2m temperature over Beijing urban core region

3. MODEL CONFIGURATION

We use the WRF coupled with Single-Layer UCM modeling system. Three one-way nested domains were configured over Beijing (Fig. 2). ERA-interim were chosen to provide boundary/initial conditions for all simulations.

5. MODEL VALIDATION

Model results from control simulation were validated against in-situ observations (Fig. 4).

Figure 4. comparison of 2m temperature (red line is simulation)

6. RESULTS: UHI INTENSITY

Definition of UHI intensity (UHII): Average of 2m temperature difference

temperature profile than 0.00 0.10 0.15 Theta difference (K) compact-city. Figure 8. Vertical profiles of average potential temperature difference

0.20

6. RESULTS: RELATIVE CONTRIBUTION

NOTE 4: Climate change contributes more than 80% to the total warming over the urban core region in 2050s, while the contribution of urban coverage to warming is ~20% (assessed using

Figure 2. WRF domain configurations

Table 1. WRF physics options			
Option			
RRTM Scheme			
Dudhia Scheme			
Monin-Obukhov Scheme			
Noah LSM			
Yonsei University Scheme (YSU)			
Single Layer UCM (SLUCM)			
Noah Land Surface Model (Noah LSM)			
MODIS 30s			

between urban region and rural region. **NOTE 1**: UHII is reduced by 0.5 C on average in dispersed-city scenario, while compact-city increase UHII (by ~0.1 C on average).

interaction explicit factor-separation Analysis).

Table 3. Relative contributions to warming effect

Scenarios	Compact-city	Dispersed-city
Total increase (K)	2.98	2.89
Due to Climate (K)	2.44 (82%)	2.44 (85%)
Due to Urbanization (K)	0.50 (17%)	0.40 (13%)
Interactions (K)	0.04 (1%)	0.07 (2%)

CONTACT INFORMATION

Dev Niyogi (email: niyogi@gmail.com/ climate@purdue.edu) Long Yang (email: longyang@princeton.edu) Link: http://landsurface.org/