A contribution to the summertime heat improvement in a marathon course by application of radiate and airflow simulation

by Yasunobu Ashie

National Institute for Land and Infrastructure Management, Japan Introduction / back Ground

UHI simulation models (so many)

✓ Meso-scale model
 ✓ Urban Canopy model
 ✓ CFD

↓ non steady state
 ↓ condition
 → mainly, steady state
 condition

Outdoor thermal sensation

✓ Air temperature, humidity
✓ Velocity

 ✓ Radiation (short & long wave)

non steady state steady state

Heat balance model of urban surfaces coupling Indoor climate

(a)Heat balance of urban surfaces.

(b)Indoor climate

- (1) Short wave radiation
- (2) Long wave atmospheric radiation
- (3) Mutual radiative exchange
- (4) Sensible and latent heat
- (5) Heat conduction
- (6) Heat convection
- (7) Sun inlet
- (8) Heat generation
- (9) Ventilation
- (10) Heat released from floor

Characteristics of the simulation code

Item	Description
Flow field	Compressible compound flow under a low Mach number condition
Governing equations	•Continuity equation
	•Momentum equations
	(Effects of buoyancy, Coriolis force, and drag forces of plants are taken into account.)
	•Energy equation
	(Formulated using potential temperature. Release of sensible heat from artificial sources, walls, etc.
	is taken into account.)
	•Transport equation for water vapor
	(Formulated using specific humidity. Release of latent heat from artificial sources, wall, etc. is taken
	into account.)
	•Transport equation for turbulent kinetic energy, k
	(Production of turbulent energy by buoyancy, humidity, and plants is taken into account.)
	•Transport equation for dissipation rate of k , ε
	(Dissipation of turbulent kinetic energy by buoyancy, humidity, and plants is taken into account.)
	**All equations are formulated based on FAVOR method in order to take into account the effects of the
	sub-grid scale parts of the ground and buildings.
Turbulence model	Standard k - ε model
Coordinate system	3-dimensional Cartesian coordinate system
Computational grid	Staggered grid
Discretization method	Finite difference method
Spatial discretization	1st order upwind differencing scheme (For convection term.), 2nd order central differencing scheme
	(Except for convection term.)

Example of surface temperature distribution

Benchmark Test for heating and cooling loads

∼ Building Energy Simulation Test ~

Validation of CFD simulation in urban areas

Urban district model (NILIM)

Tokyo Olympic game 2020

Tokyo(1964) 10 Oct - 24 Oct Tokyo(2020) 24 July – 9 Aug

Heat countermeasures at the marathon course

Present situation 1

Present situation 2

(b) 9:00 Simulated air temperatures on 19 Aug, 2013

After the Countermeasures 1

Water retentive pavement

• Mist spray

tree

Simulated MRT at 13:00 on 19 Aug, 2013

After the Countermeasures 2

Simulated SET* differences by countermeasures at 13:00 on 19 Aug, 2013

Simulated air temperature differences by countermeasures at 13:00 on 19 Aug, 2013

Example using net to the streets (Malaga, Spain)

Conclusion

 <u>Urban district model</u> has been developed to estimate daily air temperatures and thermal sensation considering urban complex morphologies.

• <u>Heat environment at the marathon course in</u> Tokyo was simulated to clarify the thermal effects by UHI countermeasures.

Thank you