

Effects of urban pollution on IAQ in energy-efficient buildings in the UK

Dr Zhiwen (Vincent) Luo* School of Construction Management and Engineering University of Reading UK

*z.luo@reading.ac.uk

Background

- 80% CO2 reduction by 2050 required
- 78% of current housing stock will still be in existence by 2050

Unintended consequence: IAQ

- Reductions in envelope permeability without mechanical ventilation produced increases in indoor PM2.5concentrations (Shrubsole et al, 2012).
- Mean indoor radon concentrations increase by an estimated 56.6% and additional annual burden of 4700 life years lost when increasing airtightness (Milner et al, 2014)

Is there an optimum ventilation strategy for IAQ?

Research question

 In which location the weatherization retrofit (airtightness improvement) is encouraged?

• Is there a balance of ventilation between penetration of outdoor pollution and dilution of indoor-generated pollutants?

One-compartment IAQ model

$$V\frac{dC_i}{dt} = P\alpha VC_o - \alpha VC_i - kVC_i + \dot{m}$$

Transient PenetrationAirflowDepositionIndoorremovalsource

$$C_i = \frac{P\alpha C_o}{\alpha + k} + \frac{\dot{m}}{V(\alpha + k)} = F_{inf} C_o + C_{ig}$$

Ref.: WW Nazaroff, Indoor Air 14 (Suppl. 7), 175, 2004.

Case study in London

Indoor emission

Scenarios	Emission rate		
No indoor source	0		
Medium indoor source	0.95 (mg/h)		
Heavy indoor source (cooking, smoking etc)	1.7(mg/min) for cooking period		

Airtightness

Scenarios	Airtightness		
Before Part L1 2002	20m ³ /(m ² h) @50 Pa (0.8 ACH)		
After Part L1 2002	10m ³ /(m ² h) @50 Pa (0.4 ACH)		
Passivhaus	0.6 ACH@50 Pa (0.03ACH)		

Urban background

Health and economic implications

The change in health outcomes due to the change in indoor PM2.5 concentration

C-R function: $\Delta y = y_0 P(e^{\beta \Delta x} - 1)$

Concentration—response functions. This table provides the coefficients for the concentration—response functions, the formulas for each function varies among the studies and can be found directly from the references in the final column.

Pollutant	Outcome	Concentration change β coefficient (95% CI)	B-coefficient standard deviation	Baseline prevalence of illness per year y_0	Reference
PM2.5 [μg/m ³]	Total mortality Chronic bronchitis	5.8E-3 (2.0E-3, 1.0E-2) 9.1E-2 (7.8E-2, 1.1E-1)	1.9E-03 6.8E-03	7.40E-3 4.00E-4	Pope et al. [6] Abbey et al., [34]
	Asthma attack	1.4E-3 (3.1E-4, 2.5E-3)	5.6E-04	2.70E-2	Whittemore and Korn [35]
	Minor restricted activity days	7.4E-3 (6.0E-3, 8.8E-3)	7.0E-04	2.14E-2	Ostro and Rothschild [36]
	All hospital admissions—all respiratory Non-fatal stroke	1.5E-3 (0, 5.0E-3) 2.5E-2 (2.0E-3, 4.8E-2)	1.8E-03 1.2E-02	2.58E-5 2.00E-4	Burnett et al. [37] Peters et al. [38]

- When we should increase airtightness?
- When we should open windows?

Balance-point concentration

$$\frac{C_i}{C_o} = \frac{P\alpha}{\alpha + k} + \frac{\dot{m}}{V(\alpha + k)C_o} = P$$

Balance-point outdoor concentration

$$C_{oe} = \frac{\dot{m}}{kVP} \qquad \frac{C_{i}}{C_{o}} = P + \frac{KP(C_{o,e} - C_{o})}{C_{o}(a + K)}.$$
If $C_{o,e} > C_{o}$ then $\frac{C_{i}}{C_{o}} > P$,
If $C_{o,e} < C_{o}$ then $\frac{C_{i}}{C_{o}} < P$.
Liet al. 2003
14

Conclusions

- Building tight, ventilate right. Indoor and outdoor fight.
- The increase of airtightness level by more stringent insulation towards Passivhaus standard in UK can lead to either increase or decrease of indoor pollution concentration depending on the relative strength of outdoor concentration and indoor emission rate
- Balance-point concentration will be an important parameter to determine when open the window.

THANK YOU

