Impacts of a future city master plan on on thermal and wind environments in Vinh city, Vietnam

Satoru Iizuka, Nagoya University, Japan Tatsunori Ito, Nagoya University, Japan Masato Miyata, Mitsubishi UFJ R&C, Japan

Background: Vietnam's recent growth

Source: IMF-World Economic Outlook Databases

Source: The World Bank

Under the situation of Vietnam's recent growth, many city master plans have been proposed.

City master plan for Vinh city, Vietnam

By Nikken Sekkei Civil Engineering Ltd., Japan

Vinh city, Vietnam (1)

Vinh city, Vietnam (2)

In Vinh city, June is the hottest month. Sep. and Oct. are rainy months.

Introduction of city master plan

6

Development of downscaling model

Computational domains and grid design

	Size	Grid points	Horizontal grid
Domain 1	585 km×540 km×21 km	130×120×34	4.5 km
Domain 2	177 km×159 km×21 km	118×106×34	1.5 km
Domain 3	52.5 km×46.5 km×21 km	106×94×34	0.5 km g

Simulated cases (1)

	Period	Land use	
Case 0	June in 2011 (Present)	Present land use	
Case 1		Present land use	
Case 2		City master plan	
Case 3	June in the 2030s (Future)	Northern concentration of the new urban districts	
Case 4		Southern concentration of the new urban districts	

Three categories in the urban area:

- 1. Central business district (CBD) Average height of buildings: 26 m, Building (green) coverage ratio: 50% (50%)
- 2. Existing urban district Average height of buildings: 12 m, Building (green) coverage ratio: 70% (30%)
- New urban district Average height of buildings: 12 m, Building (green) coverage ratio: 70% (30%) 9

Simulated cases (2)

Present land use (Cases 0 and 1)

Northern concentration (Case 3)

Master plan (Case 2)

Southern concentration (Case 4) 10

Future projection by pseudo global warming method

Effect of global warming in the 2030s

Future (the 2030s) climate with present land use (Case 1) – Present (2011) climate with present land use (Case 0)

Effect of introducing city master plan

Future (the 2030s) climate with city master plan (Case 2) – Future (the 2030s) climate with present land use (Case 1)

Source: IPCC Fifth Assessment Report, Synthesis Report (SPM)

Effect of new urban district structure (1)

Future (the 2030s) climate with modified master plan (Case 3) – Future (the 2030s) climate with city master plan (Case 2)

Effect of new urban district structure (2)

Future (the 2030s) climate with modified master plan (Case 4) – Future (the 2030s) climate with city master plan (Case 2)

Summary

- 1. With the continuous progress of global warming, the future (the 2030s) thermal environment in Vinh city was about 1.8°C hotter than that in the present status.
- By introducing the proposed city master plan, the averaged air temperature in the urban areas was 0.17°C higher than that in the case with the present land use.
- 3. The future (the 2030s) thermal environment in the case with the original city master plan was better than that with the northern or southern concentration of the new urban districts.

RCP scenarios IPCC 5th assessment report

RCP: Representative Concentration Pathway

Source: IPCC AR5 Working Group I Summary for Policymakers

Pseudo global warming data (1)

Components of global warming

- 1. Horizontal wind components
- 2. Potential temperature
- 3. Geopotential height
- 4. Sea surface temperature
- 5. Ground surface temperature

Pseudo global warming data (2)

- 1) Monthly variations of 10-year averaged data from 2030 to 2039 based on the RCP 8.5 scenario
- 2) Monthly variations of 10-year averaged data from 2000 to 2009

1) – 2) was added to the present (June 2011) NCEP Final Operational Global Analysis data.