BAMBOO STRUCURES : A PERSPECIVE FOR CLIMATE CHANGE MITIGATION

Dr. Chaaruchandra Arun Korde; Dr. Anurag Kandya & Dr. P. Sudhakar

Green Bam Soluions, New Delhi, Airef Engg. Pvt. Ltd.; Pandit Deendayal Petroleum University, Gandhinagar, India; Haritha Eco Trust, Andhra Pradesh, India Food, Fodder and Medicines

After 10 - 12

weeks

Every ton of steel produces 3 ton of CO₂

Every Ton of Bamboo consumes 1 ton of CO₂

Even a 20% Optimistic replacement of Steel with Bamboo in any type of application will lead to

> Decrease in demand of energy intensive Steel

- Provide a source of employment in a self sustainable manner
- Reduce Global Warming

After 2 - 3 years slivers for weavingmats, baskets

After 10 - 12

months

High Tensile

Ropes And

Soft Interior

for Bio Fuel

Bamboo is one of the hardiest plant and it can yield 20 times more timber than other trees in the same area.

etc.

While a 60-foot tree cut for market takes about 30-60 years to replace, a 60-foot bamboo takes 50-60 days to replace

Bamboo replaces 30 per cent of its biomass in one year, while a tree forest can only replace 3 to 5 per cent.

Bamboo helps mitigate water pollution due to its high nitrogen consumption, making it a solution for excess nutrient uptake of wastewater from manufacturing, livestock farming and sewage treatment

Bamboo helps mitigate water pollution due to its high nitrogen consumption, making it a solution for excess nutrient uptake of wastewater from manufacturing, livestock farming and sewage treatment

Unlike most tropical hardwood species, which take at least 30 years to mature, bamboo shoots and culms (stems) can be harvested at about three to four years after planting

Ecological Performance

Material	Energy	Stiffness	Strength	Energy/ Stiffness	Energy/ Strength
	(GJ/m ³)	(Gpa)	(Mpa)	(J/Nm)	(kJ/Nm)
Aluminium (Extrusions)	800	70	300	11.4	2.67
Steel (Grade 43 sections)	500	210	275	2.4	1.82
GRP (UD Glass/Polyester)	250	40	300	6.3	0.83
CFRP (UD carbon/Epoxy)	500	125	900	4.0	0.56
Wood (Finnish Birch)	3.8	16	80	0.24	0.048
Bamboo	3.8	25	120	0.15	0.032

Bamboo

Diameters Ranging from 20 mm to 300 mm 115 species in India and 1200 species world over

Why bamboo

Why bamboo

Why bamboo

- Traditional methods for Timber Houses of 3-5m span require trees of over **30 years old**
- Most Farmers Need Returns in 4 6 years

THE CHALLENGE:

How to utilize it for sustainable infrastructure applications..?

What is a structural main load bearing element (SMLBE) ?

Why bamboo as SMLBE ?

Bamboo and Wood with same cross sectional Area

Bamboo & other Wood

Bamboo & Other Wood

Material properties of *Dendrocalamus strictus* Bamboo

- Allowable compressive stress = 10 MPa (NBC 2005)
- Modulus of Elasticity = 15000 MPa (NBC 2005)
- Tensile stress = 150 MPa

Dendrocalamus strictus

45 % of Indian Bamboo

Material Testing

Where is the Engineering challenge ?

- 1. Development of a joinery to integrate more than two bamboos together
- 2. Establish reproducibility of technology

Developed Technology

HARITHA IITD BAMCRETE (HIB) TECHNOLOGY

Dendrocalamus strictus

45 % of Indian Bamboo

Scientific Evaluation

(a)

45 % of Indian Bamboo

Ultimate Load Test

MAXIMUM LOAD = 2000 kg; Span 4.5 m

Korde C., West R., Gupta A. & Sudhakar P., "Laterally restrained dual bamboo concrete composite arch under uniformly distributed loading", in Special Issue of Sustainable Building Structures, **Journal of Structural Engineering**, ASCE, 2015.

FAILURE PATTERNS – FRESH ARCHES

Laterally Restrained Testing

Column Test Equipment Developed for Testing

Bamcrete Column under Laterally Restrained Pure Axial Loading

Deformation (mm)

Failure Pattern

Failure of Concrete Band at 33 kN Load

EARTHQUAKE ANALYSIS

A detail structural analysis is carried out to determine the forces and stiffness of the structure

EARTHQUAKE ANALYSIS

Sr.	Load Combination	2 nd Storey deformation
140.		(mm)
1.	Dead Load	5.256
2.	Live Load	0.044
3.	EX Torsion Positive	0
4.	EX Torsion Negative	0
5.	EZ Torsion Positive	0
б.	EZ Torsion Negative	0
7.	1.5 (D.L. + L.L.)	7.95
8.	1.2 (D.L. + L.L. + EXTP)	6.36
9.	1.2 (D.L. + L.L. + EXTN)	6.36
10.	1.2 (D.L. + L.L EXTP)	6.36
11.	1.2 (D.L. + L.L EXTN)	6.36
12.	1.2 (D.L. + L.L. + EZTP)	6.36
13.	1.2 (D.L. + L.L. + EZTN)	6.36
14.	1.2 (D.L. + L.L EZTP)	6.36
15.	1.2 (D.L. + L.L EZTN)	6.36
16.	1.5 (D.L. + EXTP)	7.884

17.	1.5 (D.L. + EXTN)	7.884
18.	1.5 (D.L EXTP)	7.884
19.	1.5 (D.L EXTN)	7.884
20.	1.5 (D.L. + EZTP)	7.884
21.	1.5 (D.L. + EZTN)	7.884
22.	1.5 (D.L EZTP)	7.884
23.	1.5 (D.L EZTN)	7.884
24.	0.9 D.L. + 1.5 EXTP	4.73
25.	0.9 D.L. + 1.5 EXTN	4.73
26.	0.9 D.L 1.5 EXTP	4.73
27.	0.9 D.L 1.5 EXTN	4.73
28.	0.9 D.L. + 1.5 EZTP	4.73
29.	0.9 D.L. + 1.5 EZTN	4.73
30.	0.9 D.L 1.5 EZTP	4.73
31.	0.9 D.L 1.5 EZTN	4.73

MAXIMUM ALLOWABLE DEFORMATION = 0.004 h = 10.8 mm; hence safe

COST PROJECTON – R & D MODE

Fig.8.11Cost estimates for 45 sqm experimental demonstration structure under R & D mode; Total Cost of Structure = Rs. 11.6 lakhs; Total Area of Construction = 45 m²; Cost per Sq m. = 26000; Cost per Sqft = 2300

COST PROJECTON – 27 sq. m

Fig. 8.12 Cost estimates for 27 sqm structure under replication mode; Total Cost of Structure = Rs. 1.17 lakhs; Total Area of Construction = 27 m^2 ; Cost per Sq m. = 4276; Cost per Sqft = Rs. 385 per sq. ft. & Estimated time = 10 days with a team of 18 artisans

COST – BENEFIT ANALYSIS: 27 sq. m house 1.17 lacks (U.S. \$ 2400)

Wall Panels with Bamboo in RCC Buildings'

Experiments/ constructions at Haritha

Bamboo Pent House Studies

R& D in Bamboo: Buildings/Infrastructure

CHOICE IS OURS

Technology to Just sustain

Sustainable Technology

chaarukorde27@gmail.com

THANK YOU