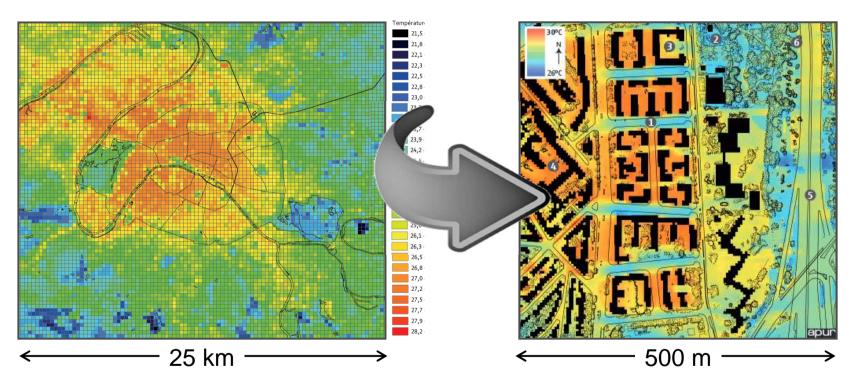
Observation of urban climate variability at local scale and comparison with human perception

Noémie Gaudio¹,

Sabrina Marchandise², Julien Le Bras¹, Aude Lemonsu¹, Sinda Haouès-Jouve², Dominique Legain¹, Julia Hidalgo², Benoit Tudoux²

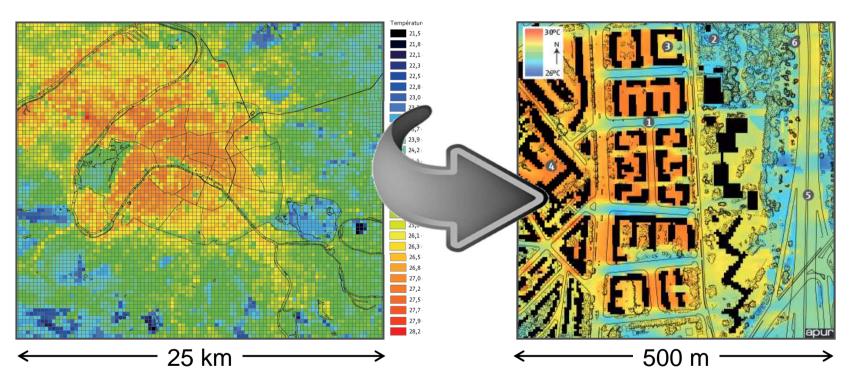
¹ Météo-France / CNRS, Toulouse, France
 ² Université Toulouse 2 Le Mirail / CNRS, Toulouse, France



Urban heat island at city scale

Microclimate variability at neighbourhood scale

Source: EPICEA Project Source: APUR



Urban heat island at city scale

Microclimate variability at neighbourhood scale

Source: EPICEA Project

Interest for urban planning!

Source: APUR

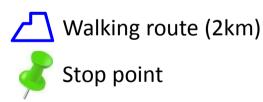
- Urban microclimate at the neighbourhood scale
- > Take into account human perception
 - Physical approach: Experimental quantification of the spatial variability of urban microclimate at neighbourhood scale
 - Sensitive approach:
 Consult people feeling about climatic comfort

- Urban microclimate at the neighbourhood scale
- > Take into account human perception
 - Physical approach: Experimental quantification of the spatial variability of urban microclimate at neighbourhood scale
 - Sensitive approach:
 Consult people feeling about climatic comfort

EUREQUA project (2012-2016): Interdisciplinary project dealing with environmental quality of the districts

> Interdisciplinary field experiment in Toulouse (France)

- ➤ Interdisciplinary field experiment in Toulouse (France)
- > Focus on a district of 1 x 0.5km²



- Interdisciplinary field experiment in Toulouse (France)
- > Focus on a district of 1 x 0.5km²

- > Interdisciplinary field experiment in Toulouse (France)
- > Focus on a district of 1 x 0.5km²

Sensitive approach:

Social survey

	-1	+1
COMFORT	uncomfortable	comfortable
TEMPERATURE	cold	hot
WIND	windy	calm
HUMIDITY	humid	dry
SUNSHINE	shaded	sunny

- Interdisciplinary field experiment in Toulouse (France)
- > Focus on a district of 1 x 0.5km²

Sensitive approach:

Physical approach:

Temperature, radiative T, wind, humidity, UTCI (Universal Thermal Climate Index)

- Interdisciplinary field experiment in Toulouse (France)
- Focus on a district of 1 x 0.5km²

<u>Timescale</u>:

3 seasons =

January, April, June 2014

x 3 consecutive days of

mobile measurements

x **3 hours**: 10-16-19h

- Interdisciplinary field experiment in Toulouse (France)
- > Focus on a district of 1 x 0.5km²

Two weather types (Hidalgo et al. 2015):

winter group (3 days)

summer group (5 days)

Timescale:

3 seasons =

January, April, June 2014

x 3 consecutive days of

mobile measurements

x **3 hours**: 10-16-19h

2 weather types8 days*3 hours6 stop points/itinerary

Sensitive distinction between the stop points?

Social surveys

2 weather types8 days*3 hours6 stop points/itinerary

Link between climatic comfort and climatic parameters evaluation?

Sensitive distinction between the stop points?

Objective differences between the stop points?

Social surveys

2 weather types 8 days*3 hours 6 stop points/itinerary

Meteorological measurements

Link between climatic comfort and climatic parameters evaluation?

Sensitive distinction between the stop points?

Objective differences between the stop points?

Social surveys

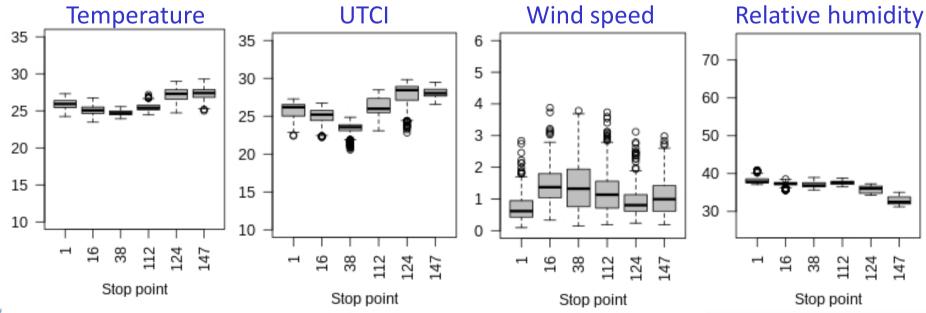
2 weather types 8 days*3 hours 6 stop points/itinerary

Meteorological measurements

Link between climatic comfort and climatic parameters evaluation?

Link between measurements and human perception

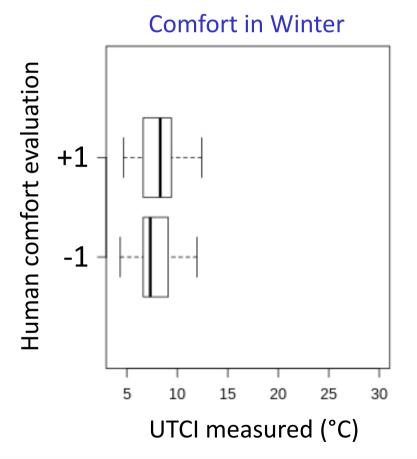
➤ Meteorological measurements: **ANOVAs**

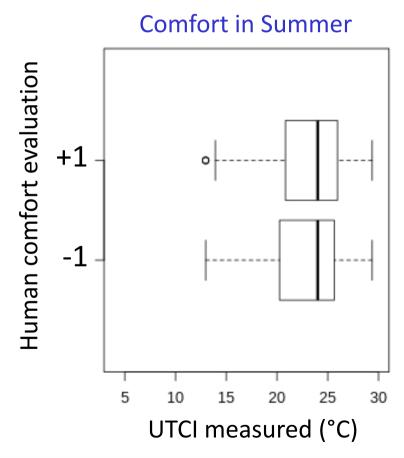


> Meteorological measurements: ANOVAs

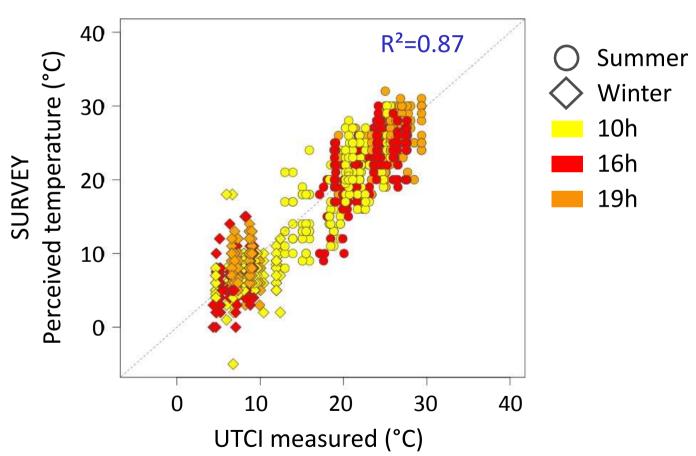
Ex. 18/06/2014, 16h

Significant differences between stop points


- > Social surveys: qualitative approach
- > Focus on climatic comfort

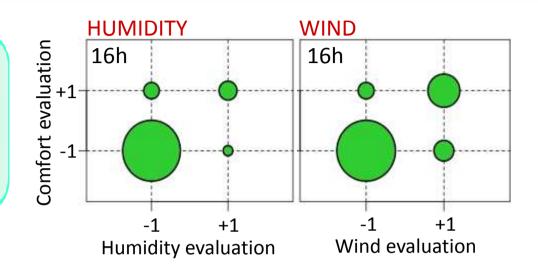


No significant link between climatic comfort and measured UTCI



Temperature well evaluated by inhabitants

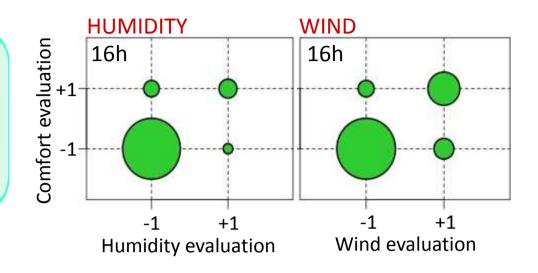
SEASONAL EFFECT


Comfort ↔ other meteorological parameters

Winter

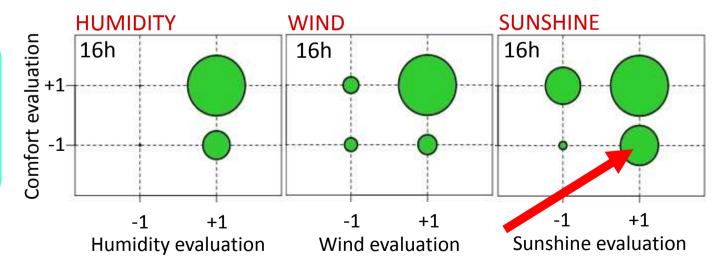
Social survey

	-1	+1
COMFORT	uncomfortable	comfortable
WIND	windy	calm
HUMIDITY	humid	dry
SUNSHINE	shaded	sunny



Winter

Climatic **discomfort**


Wet and windy conditions

Summer

Climatic **comfort** \leftrightarrow

Dry and calm conditions

Conclusion

➤ Large database of meteorological parameters and human perception of climatic comfort and parameters

First results on the analysis of sensitive and physical

approaches

➤ In progress...

real cross-analysis of the sensitive and physical approaches

