A multi-layer urban canopy model for neighbourhoods with trees

Scott Krayenhoff, Andreas Christen, Alberto Martilli, Tim Oke

ICUC-9 Toulouse - July 21, 2015

Mesoscale atmospheric modelling

Averaging scale and dimension

More process-based & less parameterized

Lower computational cost

Tree-building interaction

(a) 'Tile approach'

Trees and buildings interact

- Radiatively:
 - Solar shading
 - Longwave trapping
 - Multiple reflection
- Dynamically:
 - Sheltering
 - Mutual impacts on turbulent environment

(b) UCM with integrated vegetation

Objectives

Model Development

- Numerical model for the impacts of trees on neighbourhood-average *radiation* exchange (Krayenhoff et al. 2014 BLM)
- Parameterization for the impact of trees on neighbourhood-average *flow* (Krayenhoff et al. 2015 BLM)
- 3. Urban Canopy Model (UCM) for neighbourhoods with trees (includes models 1 and 2)

- Multi-layer
- Process-based
- Computationally-efficient
- Explicitly account for building-tree interaction

Objective 1

Numerical model for the impacts of trees on neighbourhood-average *radiation* exchange

Photo: Andreas Christen

Radiation model: Conceptualization & physics

- Tree foliage is evenly distributed across the 'canyon' or 'building' spaces
- Beer's law for attenuation by vegetation; spherical leaf angle distribution with clumping
- Ray tracing, view factors, and matrix inversion

Objective 2

Parameterization for the impact of trees on neighbourhood-average *flow*

Photo: Andreas Christen

Increasing model realism & computational requirements

Removal of each source/sink term in 1-D model

k = turbulent kinetic energy

Objective 3

BEP-Tree: An Urban Canopy Model for neighbourhoods with trees

Photo: lain Stewart

Multi-layer urban canopy model with trees

Model testing – Vancouver Sunset

View from tower, July 20, 2008

Building area fraction 0.29 m² m⁻²

Leaf area index $0.39 \text{ m}^2 \text{m}^{-2}$

Model inputs

Foliage clumping: Ω = 0.34

Turbulent Prandtl number: Pr = 0.25

Two street directions: 0°, 90°

Radiation/thermal parameters from LCZ 6: Open Low-rise (Stewart et al. 2014) and Krayenhoff and Voogt (2010)

- Albedos
- Emissivities
- Thermal conductivities
- Heat capacities
- Thicknesses

Sunset: July 20, 2008 (dry summer)

Overall energy exchange

Upward radiation fluxes

Krayenhoff et al., ICUC-9 Toulouse

Note: Grass contributes minimal Q_E

Sunset: Sept. 7, 2011

Lower canopy air temperature from *detailed spatial sampling* over ≈4 km²

(Crawford and Christen, 2014)

Effects of trees on canopy thermal environment

- 1. <u>Cooling</u>: shading of canopy surfaces from **shortwave radiation**
- 2. <u>Heating</u>: trapping of **longwave radiation** within canopy
- 3. <u>Heating</u>: reduction of **wind** and **turbulence** (venting) in canopy

In radiation transfer through tree canopy, clumping of foliage ($\Omega_{\rm rad}$) increases transmission

 Ω_{rad} = 1 means random foliage distribution (~minimum transmission) Ω_{rad} = 0 means all leaves are at the same point in space (maximum transmission)

Marcolla et al. (2003) define an analogous clumping coefficient for the dynamic sink and source terms, $\Omega_{\rm dyn}$, which assumes shaded leaves do not contribute to momentum absorption

-> effective leaf area density for dynamic source/sink terms

Effects of trees on canopy thermal environment

distribution)?

Summary: Urban Canopy Model with Trees

- BEP-Tree:
 - First multi-layer UCM to integrate trees & building-tree interactions
- Urban trees:
 - Add latent heat at the expense of sensible heat
 - Have both warming (e.g., reduced wind and turbulence) and cooling (e.g. solar shading) effects on the canopy at the neighbourhood scale
- Future work
 - Canopy measurements needed in *neighbourhoods with trees* for model evaluation: fluxes, surface temperatures
 - Foliage clumping at neighbourhood scale for radiation, dynamics?
 - Canopy venting too low: Dispersive fluxes? Thermal effects?
 - Model development: Stomatal conductance, Hydrology, Building energy

Thank you

<u>People</u>

Jose-Luis Santiago Ben Crawford Andres Simon James Voogt Douw Steyn Phil Austin Andy Black Jing Chen Iain Stewart

Funding

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas