CALCULATION METHOD FOR OUTDOOR AIR TEMPERATURE OF WOODED URBAN AREA

Jie Wu
College of Civil Engineering and Architecture, Guangxi University
Jinbo Mai, Yufeng Zhang
State Key Laboratory of Subtropical Building Science, South China University of Technology

Climatic zones for architecture

Urban area microclimate

- Outdoor safety, comfort and building energy consumption
- Design phase is most crucial, important and lack of scientific means to support

- Quick and easy prediction

Supbritan offaild of Subtropical Building Science

CTTC model

- Cluster thermal time constant
- Swaid \& Hoffman, 1990
- Heat transfer model + empirical equation

$$
\begin{gathered}
t_{a}=t_{b}+\quad t_{s o l} \quad t_{/ w} \\
t_{s o l}=\sum_{i=0} \frac{1}{h} I\left(1 \exp \frac{i}{C T T C}\right) \\
t_{/ w}=\frac{q_{l w}}{h}
\end{gathered}
$$

Unwooded areas

- 2012.9-10, warm sunny days
- Semi-enclosed and enclosed urban areas
- Ground and walls solar radiations
- Area-average TTC of
 ground and walls

$$
\begin{gathered}
t_{s o l}=\frac{1}{\sum A} \sum_{i=0}\left[\left(A_{G} \frac{m_{G}}{h_{G}} I_{G}+A_{w} \frac{m_{w}}{h_{w}} I_{w}\right)\left(1 \exp \frac{i}{C T T C}\right)\right] \\
C T T C=\frac{1}{A}\left(A_{G} T T C_{G}+A_{w} T T C_{w}\right)
\end{gathered}
$$

Purpose

- Field measurements on air temperatures of wooded urban areas
- Analyze heat island intensity
- Test the performance of Green CTTC model

Green CTTC model

- Shashua-Bar \& Hoffman, 2002
- CTTC model + Trees' effect

- Shading effect
- Sensible heat flux of trees

$$
q_{s o l, T}+q_{M, T}=q_{s, T}+q_{l, T}
$$

$$
t_{s l}=\frac{1}{\sum A}\left(\sum_{l=0}\left[\left(A_{G} \frac{m_{G}}{h_{G}} I_{G}+A_{w} \frac{m_{w}}{h_{w}} I_{w}\right)\left(1 \exp \frac{i}{C T T C}\right)\right]+A_{T} \tau_{S T} T\right)
$$

Wooded communities

Field measurements

- 2013.8-10, warm sunny days
\square Air temperature at 1.5 m with aspirated radiation shield
- Parameter of LAI, SVF, SAR

Heat island intensity

$$
\begin{aligned}
& C H I=t_{\text {community }} \quad t_{\text {district }}
\end{aligned}
$$

Heat island intensity

$P H I=t_{\text {point }} \quad t_{\text {cormunity }}$
$P H_{\text {day }}=1.23 \mathrm{SAF}$
($\mathrm{R}^{2}=0.524$)
$P H I_{\text {night }}=0.448 \mathrm{SAR}$
($\mathrm{R}^{2}=0.244$)

$P H_{a \|}=0.602$ SVF $0.541 \quad$ SAR $\left(R^{2}=0.618\right)$

Sensible heat flux ratio

- Sensible heat flux / Solar radiation absorbed and reflected by trees
- The outliers at 16:00~17:00 are due to abnormal solar radiation records
- $0 \rightarrow 0.4 \rightarrow 0$

Green CTTC model

- Before 15:00, measured
temperature close to predicted one with 20m height wall
- RSME $=0.7^{\circ} \mathrm{C}, \mathrm{d}>0.97$
- After 15:00, measured temperature goes closely with east
 boundary due to strong east wind

Green CTTC mode

- Two wooded street canyons
- RSME $=0.3^{\circ} \mathrm{C}$, $\mathrm{d}>0.96$

Conclusions

- The heat island intensity of community is recommended to be defined as the air temperature difference between community and district.
- The heat island intensity of point is influenced by parameters of SAR and SVF.
- The sensible heat flux ratio (C value) increases in the morning and decrease in the afternoon, in a range of (0, 0.4).
- The Green CTTC model can predict the trees' effect well.
- Further studies on advection and water need to be done.

THANK YOU!

