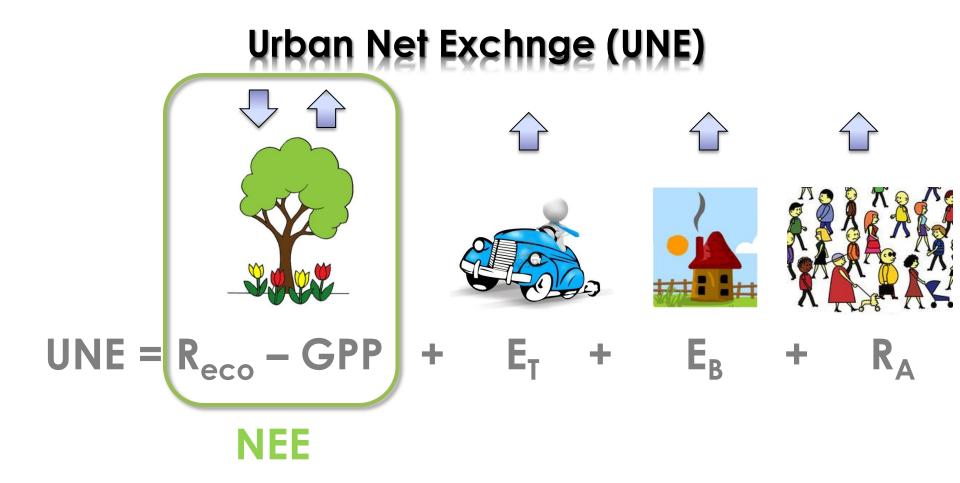
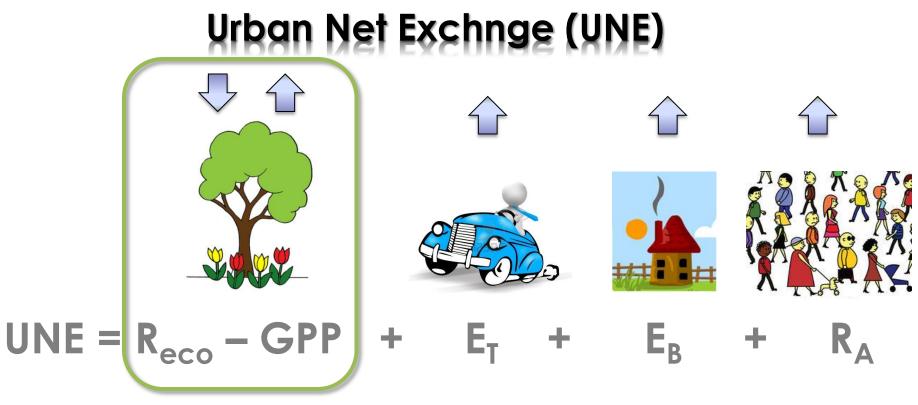
Department of Science for Nature and Environmental Resources University of Sassari

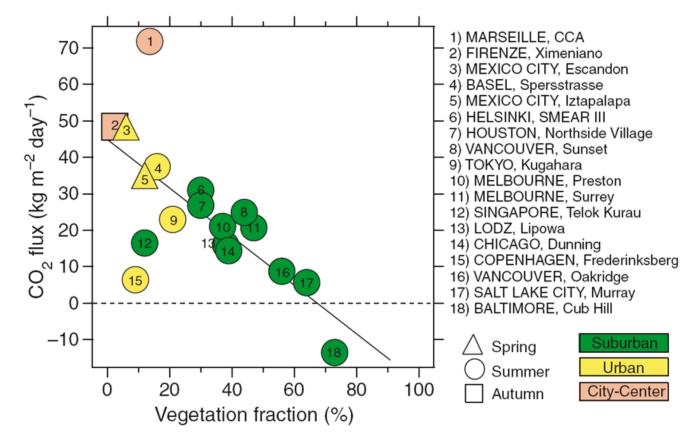



AN EMPIRICAL APPROACH TO ESTIMATE THE BIOGENIC COMPONENTS OF URBAN CO₂ FLUX

Dr. Veronica Bellucco

Prof. Sue Grimmond (Department of Meteorology, University of Reading) Dr. Serena Marras (University of Sassari and CMCC) Dr. Järvi Leena (Department of Physics, University of Helsinki) Prof. Donatella Spano (University of Sassari and CMCC)

22/07/2015



NEE

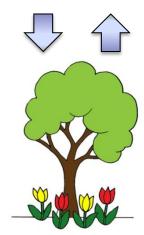
is it possible to develop an empirical model based on relations among different ecosystems ?

is it possible to simulate carbon exchanges of urban and non-urban ecosystems based on land cover fractions and environmental variables?

Vegetation cover fraction (λ_v)

λ_v > 70% – 80% cities can be considered sinks at annual scale (Velasco and Roth, 2010; Nordbo et al., 2012)

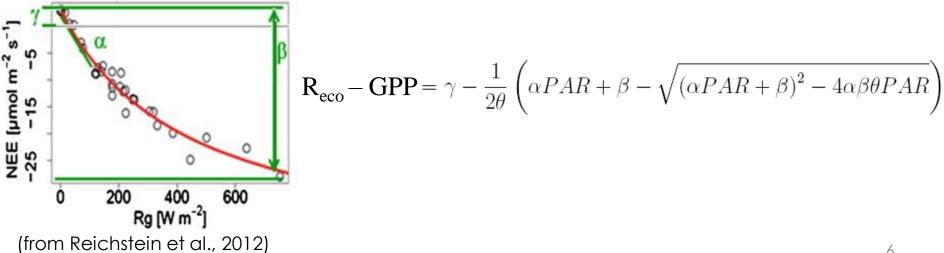
 $\lambda_v > 34\%$ vegetation offsets emissions due to other sources (Bergeron and Strachan, 2011; Velasco and Roth, 2010)

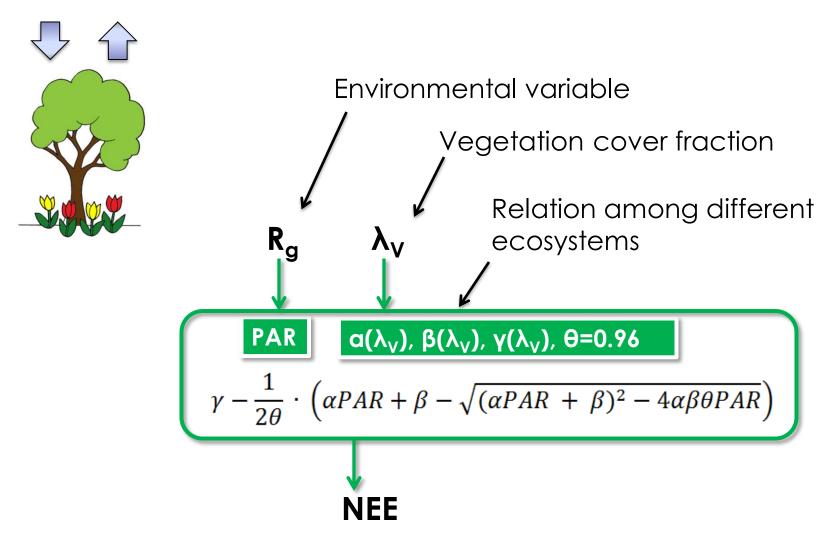

λ_v < 5% soil and vegetation exchanges can be neglected (Matese et al., 2009; Moriwaki and Kanda, 2004; Velasco et al., 2009)

Sites description and analysis

Site	Area	Latitude	Period	λ_{V}
Morgan Monroe State Forest ^L (MMSF), IN, USA (Schmid et al., 2000)	Deciduous forest	39.32° N 86.42° W	May– September (1998)	100%
Baltimore, MD, USA ^L (Crawford et al., 2011)	Suburban	39.41° N 76.52° W	Summer (2002–2006)	67%
Swindon, UK ^L (Ward et al., 2013)	Suburban	51.58° N 1.80° W	Summer (2011)	45%
Serdiana, Italy ^{or} (Marras et al., 2012)	Vineyard	39.36° N 9.12° E	Summer (2009–2011)	~50%
Montalcino, Italy ^{or} (Marras, 2008)	Vineyard	43.08° N 11.80° E	Summer (2005–2006)	~50%
Capocaccia, Italy or (Marras et al., 2011)	Mediterranean Maquis	40.61° N 8.15° E	Year (2005–2010)	~70%

Lliterature dataset, or original dataset


Model development


✓ Daytime data ($R_a > 5 \text{ W m}^{-2}$),

✓ fit of the light-response curve with LOESS regression (Cleveland et al., 1992),

✓ fit of the light-response curve using the **Non-Rectangular** Hyperbola (NRH) (Rabinowitch, 1951) and estimation of its a, β , γ , and θ coefficients through the non-linear least square regression.

Biogenic empirical model

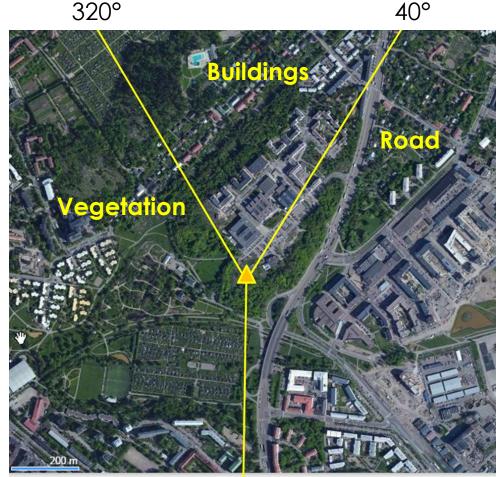
BELLUCCO et al., 2014. 31st Conference on Agricultural and Forest Meteorology, AMS, Portland

Biogenic empirical model test

$\rightarrow \lambda_v = 52\%$ (all sectors)

(Kumpula suburban site, Finland)

Helsinki


 $\lambda_v = 59\%$ (vegetation sector, 180° - 320°, Järvi et al., 2009)

summer season (June – July 2010)

reduced vehicular traffic rates

maximum ecophysiological activity

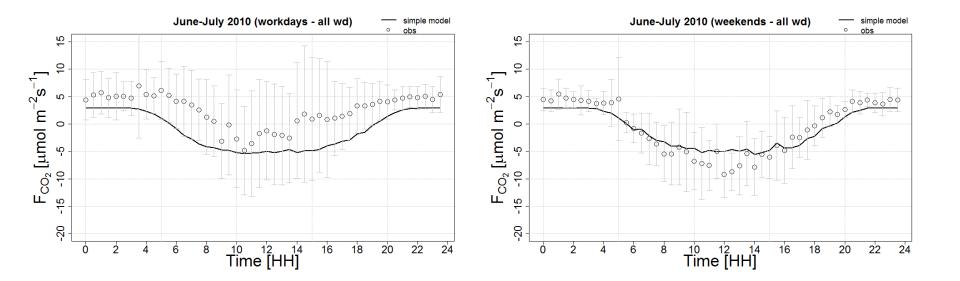
Biogenic empirical model test

Capo Caccia $\longrightarrow \lambda_v = 70\%$

(Alghero, Mediterranean maquis site, Italy)

winter season (Jan – Feb – Mar 2011)

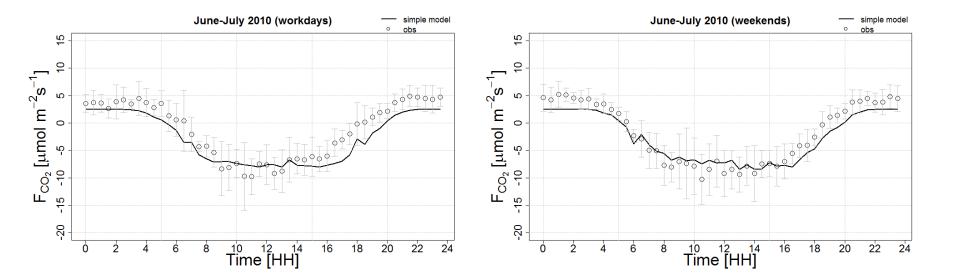
Drought periods affect ecophysiological processes


well watered conditions

Biogenic empirical model test: Helsinki (suburban)

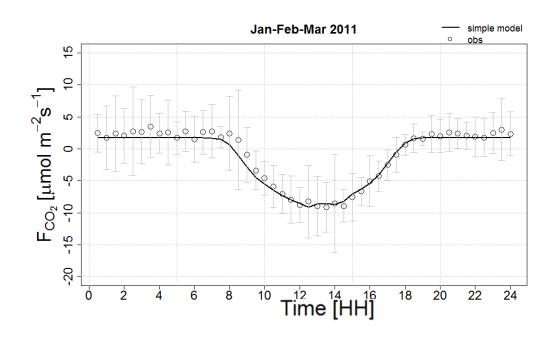
June+July	Wind sector (λ_v)	RMSE	MAE	MBE	IOA	R ²
All days	All (0.52)	2.72	2.47	-2.46	0.86	0.89
Workdays		3.97	3.62	-3.62	0.71	0.77
Weekend		1.79	1.52	-0.28	0.95	0.93

Significant values with P<0.001



Biogenic empirical model test: Helsinki (suburban)

June+July	Wind sector (λ_v)	RMSE	MAE	MBE	ΙΟΑ	R ²
All days	Vegetation(59%)	1.77	1.58	-1.16	0.97	0.95
Workdays		2.11	1.86	-1.49	0.95	0.92
Weekend		1.71	1.53	-0.78	0.97	0.96


Significant values with P<0.001



Biogenic empirical model test: Capo Caccia (rural)

Wind sector (λ_v)	RMSE	MAE	MBE	ΙΟΑ	R ²
All (70%)	0.99	0.72	0.09	0.98	0.93
	1.25	0.97	-0.70	0.98	0.96
	1.34	0.98	-0.48	0.98	0.94
ar	0.82	0.63	-0.46	0.99	0.98
	All (70%)	All (70%) 0.99 1.25 1.34	All (70%)0.990.721.250.971.340.98	All (70%)0.990.720.091.250.97-0.701.340.98-0.48	All (70%)0.990.720.090.981.250.97-0.700.981.340.98-0.480.98

Significant values with P<0.001

0 0 0

Conclusions

➢ First step in the development of a simple empirical model based on land cover fraction and environmental variables.

> Good agreement between modelled and observed data (R^2 up to 96% and 98%).

> General utility: capture the general behaviour of different ecosystems.

New approach in the study of relations among different ecosystems and the role of vegetation in urban areas.

To increase the robustness of the relations used by this empirical model, and to include a second anthropogenic module, a greater number of sites will be considered.

