LES of Momentum and Heat Transport in Urban Canopies: Challenges and Applications

Qi Li¹, Elie Bou-Zeid¹, William Anderson², Sue Grimmond³

¹Department of Civil and Environmental Engineering, Princeton University, US ²Department of Mechanical Engineering, University of Texas at Dallas, US ³Department of Meteorology, University of Reading, UK

Introduction

Turbulence Scale

Parameterization

Regional Scale

- Setter prediction of flow, temperature and mass transport within canyon
- Turbulent transport is highly sensitive to roughness length
- Need to understand both momentum and scalars in urban environments

Introduction

Real-world Problem

Pros:

 \diamond Details of surface heat/mass transfer

 \diamond Setup can be varied easily to explore effects of changing wind direction

Cons:

♦ Limited range of Reynolds number (several orders lower than the real world)

 \diamond Care should be taken to extend these studies to real-world problem

Laboratory-scale

experiments

Introduction

Real-world Problem Building-scale measurements

Pros:

 \diamond Ambient conditions are close to the real-world problem of interest

Cons:

- ♦ Difficult to generalize because of the fine details eg. surroundings, building shapes, etc.
- Challenges in upscaling to a whole facet, whole building, and whole city due to point-wise measurement

Motivation

- Wall-modeled LES can be a useful tool:
 - \diamond Large Reynolds number that is ~ $Re_{\rm ABL}$
 - \diamond Computationally feasible
 - ♦ Apply to urban canopy to study bulk transfer properties

- Some caveats
 - Currently no wall-model for vertical surfaces when the effect of buoyancy is considered
 - Still uncertainties concerning scalar transfer when the wall-modeled approach is taken

Objectives

- 1. Assessment of wall-modeled LES and identification of some challenges
- 1. To apply it to study the real-world problem of interest

LES: Immersed Boundary Method

- LES with immersed boundary method => handle complex urban geometry without using body-conformal grids
- Pseudo-spectral method for speed and accuracy
- Lagrangian dynamic scale-dependent SGS

LES: Reduction of Gibbs Phenomenon

- LES with immersed boundary method => handle complex urban geometry without using body-conformal grids
- Pseudo-spectral method for speed and accuracy
- Lagrangian dynamic scale-dependent SGS

Wall model

♦ A wall-model based on Kader & Yaglom (1972) for scalar transfer in turbulent flow

 \diamond Update the smooth-wall roughness lengths dynamically

Wall model for momentum

$$\left(\frac{u}{u_*}\right) = A\log\left(\frac{z}{n/u_*}\right) + B$$

 $\frac{\mathbf{s}_0 - \mathbf{s}(\mathbf{z})}{\mathbf{s}} = \partial \log \left(\frac{\mathbf{z}}{n/\mu}\right) + b$

Wall model for scalar

Momentum roughness length

Scalar roughness length

$$Z_{0m} = \frac{n}{u_{\mu}e^{B/A}}$$

 $Z_{0s} = \frac{11}{u e^{b/a}}$

*U*_{*} friction velocity

 s_{k} scalar flux concentration

A, B, α , β empirical constants

A	B	α	ß
2.43	5.1	2.00	4.0

Boundary Condition

• What is the appropriate boundary condition?

Spatial variation of mass transfer coefficient, laboratory scale

 Narita (2007): measure water evaporation rate on surfaces of 2D ribs

- Horizontally periodic boundary condition
- Domain height is 5H
- Vary the H/W ratio according to the experiment
- Compare mass transfer coefficient normalized

- \diamond Spatial variation of the mass transfer coefficient is captured
- \diamond % bias is about 20% averaged over all facets
- \diamond Roof surface: largest deviation
 - highly dependent on inflow conditions

Bulk relation between Re and Nu

A Nakamura et al. (2001): internally heated copper cube placed in low-speed wind tunnel

- Vary *Re* by changing the horizontal pressure forcing
- Compare with empirical relation between *Nu* & *Re* obtained in the experiment

\diamond Extreme values of h_c : at edges

- Most parts of facets only deviate "moderately" from surface mean values
- ♦ Implies: for practical applications, surface average values and cube average give reasonable estimates, especially if total heat flux is concerned.
- ♦ But point-wise field measurements could deviate by 50%

Bulk relation between Re and Nu

- ♦ Agreement with experiment: within 50%
- ♦ Reasonably good match between predicted values: Nu=aRe^m
- ♦ Confidence in the performance of wall-modeled LES
- Difference could be attributed to Re => presents further challenge to simply apply laboratory results to real world problem.

Bulk relation between *Re* and *Nu* in **outdoor** measurements

Prevailing wind direction

Simultaneous measurement of surface heat flux, temperature and wind velocity

Experimental setup

(Hagishima et al., 2003)

Roof measurement: considered for comparison to LES

Regression based on LES results

Bulk relation between Re and Nu in outdoor measurements

Experimental		LES
Emmel et al.[20]	0.85 (Roof)	0.87
Clear et al.[22]	0.8 (Roof)	0.87
Yazdamian and Klems[21]	0.89 (Windward, low-rise building)	0.89
	0.671 (Leeward, low-rise building)	0.90

- \Rightarrow *m relative* relation between wind and forced convective heat transfer
- Quantitative prediction of the relative relation from LES: comparable to outdoor experiments (mainly related to the wall-model according to Kader & Yaglom 1972)
- Absolute magnitudes of heat transfer coefficient: highly sensitive to fine details e.g. shapes, surroundings and surface materials

2. To apply it to real-world problem of interest

UCM: captures urban land surface processes - Scalable but preferably applied at neighborhood ~ city scale

LES: details of flow at building-resolving scale

LES can be used to provide physical parameters for transfer processes in UCM

(Wang et al., 2013)

Turbulent heat flux and temperature deviation: three different 2D canyon configurations

u and w components of wind velocity inside the canyon

 \diamond Both *u* and *w* determine the turbulent transfer of heat and scalar.

Eq. 1:
$$RES = (11.8 + 4.2U_{can})^{-1}$$

♦ LES results: different facets perhaps require different treatments, especially with high aspect ratio configurations \diamond Eq. 1: used in many UCMs, e.g. Masson (2000) \diamond Could be an order of magnitude difference in resistance

Conclusion

Wall-modeled LES captures spatial variation on facets of 2D canyons

- Nu predicted from LES for a single cube is comparable to *laboratory scale* experiment
- \diamond For a single cube, extreme h_c occurs on edges
- ♦ Bulk Nu-Re relation obtained from LES is comparable to outdoor experiments
- LES could be used to produce better transfer coefficients for urban land surface model

Future Work

♦ Derive a better resistance network model for UCM

Evaluate impact of using different boundary conditions (*i.e. more realistic condition including energy budget constraint*)

♦ Effect of stability on resistance network model

Acknowledgement

• We thank NCAR **yelllowstone** for our parallel computations

