

MEASURED AND MODELLED LEAF AREA OF URBAN WOODLANDS, PARKS AND TREES IN A HIGH LATITUDE CITY

JENNY KLINGBERG, JANINA KONARSKA, FREDRIK LINDBERG AND SOFIA THORSSON

Valuation of ecosystem services provided by urban greenery

- Rapid urbanization transform the natural environment
- Urban ecosystem services
 - Climate regulation
 - Biodiversity
 - Air, water and soil management
 - Noise reduction
 - Recreation and well-being

Leaf area

- The amount of foliage is a basic ecological characteristic
- Drives within and below canopy microclimate, determines and controls canopy water interception, radiation extinction, water and carbon gas exchange, etc.
- Measured as leaf area index (LAI), a dimensionless quantity defined as the total one-sided leaf area (m²) per unit ground surface area (m²).
- Measurement methods include destructive, allometric techniques and optical methods based on measurements of light transmission through the canopies.

Aim

- describe seven different types of urban green areas in terms of leaf area index (LAI) of trees
- compare two different methods to measure LAI of urban trees
- estimate urban LAI based on aerial discrete-return LiDAR

DEPARTMENT OF EARTH SCIENCES URBAN CLIMATE GROUP

Study area - Gothenburg, Sweden

- 7 case study areas
 - Residential area with green yards
 - New park by river
 - Old central park
 - Suburban forest
 - Allotment gardens
 - Central woodland
 - Traffic area

Ground measurements

- Commercial plant canopy analyzer LAI-2200 (LI-COR Biosciences, Lincoln, USA)
 - Measures solar radiation below and above the canopy
 - FV2200 software

Ground measurements

- Commercial plant canopy analyzer LAI-2200 (LI-COR Biosciences, Lincoln, USA)
 - Measures solar radiation below and above the canopy
 - FV2200 software
- Hemispherical photography
 - Nikon D5100 with Sigma 4.5 mm fish-eye lense
 - Hemisfer software (Schleppi, WSL)
 - Blue channel, underexposed images

Blue channel (blue light)

Ground measurements

- Commercial plant canopy analyzer LAI-2200 (LI-COR Biosciences, Lincoln, USA)
 - Measures solar radiation below and above the canopy
 - FV2200 software
- Hemispherical photography
 - Nikon D5100 with Sigma 4.5 mm fish-eye lense
 - Hemisfer software (Schleppi, WSL)
 - Blue channel, underexposed images
- Effective LAI (L_e) include all canopy elements intercepting radiation (do not distinguish photosynthetically active leaves from other plant elements e.g. stems and branches).
- Overcast skies

Aerial light detection and ranging - LiDAR

- Descrete-return LiDAR of the Gothenburg municipality
- Max scan angle $\pm 20^{\circ}$ and mean pulse density 13.65 m⁻²
- FUSION software
- Vegetation (>1 m) part of the point cloud
 filtered according to Lindberg and Grimmond (2011)

•
$$L_e = -\beta \ln\left(\frac{R_{ground}}{R_{total}}\right)$$

• where R_{ground} is ground returns, R_{total} is ground + canopy returns and β is a constant (2.097, Richardson et al. 2009).

Comparison of measurement methods

Uniformly overcast sky

Comparison of measurement methods

Single street trees (leaf area density based on LAI-2200)

Modelled and measured L_e

L_e in urban greenery (based on LiDAR)

Vegetation (>1m) cover (based on LiDAR)

Summary

- It is challenging to measure leaf area in the urban environment, but hemispherical photography was found to be advantageous to LAI-2200.
- L_e can be successfully modelled based on LiDAR data in the urban environment.
- The large variation in leaf area between species and types of greenery in the urban environment emphasizes the importance of detailed estimates of L_e for urban applications.

Future research

- Estimation of LAI instead of $\rm L_{\rm e}$
 - NIR hemispharical photography allows distinguishing photosynthetically active leaves from other plant elements and buildings based on NDVI (difference between the reflectance of visible and infrared light)
- Improved estimation of T_{mrt} from hemispherical photographs at vegetated urban sites

Raw picture

Red channel (NIR)

Blue channel (VIS)

NDVI

