21/Jul/2015 ICUC9 UCP5

Carbon dioxide flux measurement in the central area of Tokyo

<u>Tatsuki HIRANO¹</u>, Hirofumi SUGAWARA¹, Shohei MURAYAMA², and Hiroaki KONDO²

¹ National Defense Academy of Japan, Japan

² National Institute of Advanced Industrial Science and Technology, Japan

Outline

- Introduction
- Measurement
- \succ Diurnal variation of CO₂ flux
- Hourly emission inventory
- Flux vs. Inventory
- Summary

Introduction

Purpose

- Clarify the <u>diurnal variation</u> of CO₂ flux.
- Estimate the hourly contribution of emission factor.

Introduction

For developing regional/ hourly scale inversion,

Hourly emission inventories are required.

For validate the result of hourly scale inversion,

Diurnal variation of measured flux is necessary.

Measurement

Nov. 2012 – Oct. 2013

Measurement

©2014 Cnes/Spot Image, Digital Earth Technology, DigitalGlobe, Landsat, The GeoInformation Group, GoogleMaps

Result: Diurnal variation

How do emission factors contribute to the variation?

Emission inventory

$$E_f(m,h) = C_f Q_f(m) P_f(h)$$

- E: emission
- *m* : month
 - *h*:hour

- $C: CO_2$ emission rate
- Q: daily average volume

sub. f : emission factor (Houses / Traffic)

P: rate to daily emission

Gas consumption: from Niurao et al. (2005), Hourly traffic volume: MLIT of Japan (2015)

Result: Flux vs. Emission inventory

2 peaks are caused by different factors.

Result: Comparison of weekday & holiday flux

Significant difference was occurred in morning.

Summary

Measured CO₂ flux + Emission inventory

➤Conclusion

- Diurnal variation had 2 peaks: in morning and at evening.
- The 2 peaks are caused by different emission factors.
- The weekday/holiday contrast be attributed to traffic.

➢Moriwaki and Kanda (2004)

•Site: Kugahara, Tokyo, Japan.

•Measurement period: Apr. 2002 - May. 2003

©2014 Cnes/Spot Image, Digital Earth Technology, DigitalGlobe, Landsat, The GeoInformation Group, GoogleMaps

Kugahara: Moriwaki and Kanda (2004)

Nov. 2012 – Oct. 2013

Yoyogi (this study): Nov. 2012 – Oct. 2013

Kugahara: Moriwaki et al. (2004), Apr. 2002 - May. 2003

Seasonally frequency distribution of wind direction in 30 min mean run.

The seasonally typical fetch length of source areas

Spring	Summer	Autumn	Winter
502 m	436 m	526 m	512 m

Conceptual diagram of the Source Area Model (Schmid, 1994).