Turbulence and pollutant transport in urban street canyons under stable stratification: a large-eddy simulation

Xian-Xiang Li, Rex Britter, Leslie K Norford

Center for Environmental Sensing and Modeling (CENSAM), Singapore-MIT Alliance for Research and Technology (SMART)

Email: lixx@smart.mit.edu

July 21, 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

3 Street canyons under different stratifications

4 Turbulence structure in street canyons

5 Summary

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

Outline

- 2 The model
- 3 Street canyons under different stratifications
- 4 Turbulence structure in street canyons

5 Summary

▲ロト ▲圖ト ▲画ト ▲画ト 三面 - のへの

Atmospheric Boundary Layer

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Street canyon

- Street canyon is the basic geometry unit of urban areas;
- Many mesoscale weather and climate models (e. g., Weather Research and Forecasting, WRF) are using (2D) street canyons as the representative elements of urban areas.
- 2D street canyon (i.e., wind blowing from a direction perpendicular to the street axis) represents the worst scenario for pollutant dispersion.

Thermal stratification

- Thermal stratification (due to solar radiation, release of stored heat, anthropogenic heat etc.) plays an important role in the air flow and pollutant dispersion processes;
- During the field measurement carried out by Niachou et al. (2008), unstable weather conditions were measured in 85% of the cases in the day period, while during the night this value was still 64%;
- During nighttime, the (long wave) radiative cooling can create a stable stratification in the atmosphere boundary layer.
- Therefore, it is very important to study the effect of different thermal stratifications on the urban environment, especially the flow and pollutant dispersion in street canyons.

Outline

2 The model

3 Street canyons under different stratifications

4 Turbulence structure in street canyons

5 Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Governing equations (filtered and dimensionless) Navier-Stokes equations:

$$\frac{\partial \overline{u}_i}{\partial t} + \frac{\partial}{\partial x_j} \overline{u}_i \overline{u}_j = -\frac{\partial \overline{p}}{\partial x_i} - \frac{\partial \tau_{ij}}{\partial x_j} + \frac{1}{Re} \frac{\partial^2 \overline{u}_i}{\partial x_j \partial x_j} + g \overline{\theta} \delta_{i3},$$

Transport equation for subgrid-scale (SGS) turbulent kinetic energy (TKE):

$$\frac{\partial k_{\text{sgs}}}{\partial t} + \overline{u}_i \frac{\partial k_{\text{sgs}}}{\partial x_i} = P + B - \varepsilon + \frac{\partial}{\partial x_i} \left(\frac{2}{Re_{\text{T}}} \frac{\partial k_{\text{sgs}}}{\partial x_i} \right),$$

Transport equation for scalars (Temperature or pollutant):

$$\frac{\partial \overline{\theta}}{\partial t} + \frac{\partial}{\partial x_i} \overline{u}_i \overline{\theta} = -\frac{\partial \pi_i}{\partial x_i} + \frac{1}{RePr} \frac{\partial^2 \overline{\theta}}{\partial x_i \partial x_i},$$

$$\pi_i = -\nu_\theta \frac{\partial \overline{\theta}}{\partial x_i}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Computational domain

Model validation: Ri = 0

(Li et.al., 2008)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Model validation: pollutant, Ri = 0

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Outline

2 The model

3 Street canyons under different stratifications

4 Turbulence structure in street canyons

5 Summary

▲日▼▲□▼▲目▼▲目▼ 目 のへぐ

Reynolds stress $< u''w'' > /U^2$

Ri = -0.1

Ri = 0.1

Spanwise vorticity
$$\xi_y = rac{\partial < \overline{w} >}{\partial x} - rac{\partial < \overline{u} >}{\partial z}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Spanwise vorticity $\xi_y = \frac{\partial \langle \overline{w} \rangle}{\partial x} - \frac{\partial \langle \overline{u} \rangle}{\partial z}$

Velocity fluctuations normalized by local u_*

 $u_{rms}/u_{*} \approx 1.8$ $v_{rms}/u_{*} \approx 1.42$ $w_{rms}/u_{*} \approx 1.3$

Velocity fluctuations normalized by local u_*

 $u_{rms}/u_* \approx 1.8$ $v_{rms}/u_* \approx 1.42$ $w_{rms}/u_* \approx 1.3$

Observations in real urban areas

 $u_{rms}/u_* \approx 2.40$ $v_{rms}/u_* \approx 1.91$ $w_{rms}/u_* \approx 1.27$

◆□▶ ◆□▶ ◆三≯ ◆三≯ 三目 - のへで

Pollutant concentration $< \overline{c} > UhL/Q$

Ri = 0.188

Pollutant $< \overline{c} > UhL/Q$ within street canyon

Ri	Pollutant in the street canyon
-0.1	36.07
0	75.61
0.1	109.16
0.188	142.06

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Pollutant flux < w''c'' > hL/Q

SOC

Outline

- 2 The model
- 3 Street canyons under different stratifications
- 4 Turbulence structure in street canyons

5 Summary

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Quadrant analysis

$$u = < u > + u''$$
 $c = < c > + c''$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Quadrant analysis u"w", Ri = 0, Joint PDF

Scatter plot

Joint PDF

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Quadrant analysis u"w", Ri = 0, along roof level

Quadrant analysis w"c", Ri = 0, Joint PDF

Scatter plot

Joint PDF

◆□> ◆□> ◆豆> ◆豆> □豆

Quadrant analysis w"c", Ri = 0, along roof level

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Quadrant analysis w"c", Q1/Q3

Ri = -0.1

Ri = 0.1

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Quadrant analysis w"c", Ri = 0.188

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Quadrant analysis w"c", Ri = 0.188

Q4 > Q1 > Q3 in magnitude

・ロト ・ 雪 ト ・ ヨ ト

Outline

- 2 The model
- 3 Street canyons under different stratifications
- 4 Turbulence structure in street canyons

Summary

- Thermal buoyancy has strong effect on the turbulence and pollutant transport in urban street canyons; mixing and transport processes;
- Coherent turbulence structures are observed in street canyons and play important roles in transport and mixing processes

• Under stable stratification, the unorganized turbulent structure dominates the pollutat flux, thus reducing the pollutant dispersion from the urban canopy layer.

Acknowledgment

This research was funded by Singapore National Research Foundation (NRF) through Singapore-MIT Alliance for Research and Technology (SMART) Center for Environmental Sensing and Modeling (CENSAM).

NATIONAL RESEARCH FOUNDATION PRIME MINISTER'S OFFICE SINGAPORE

< □ > < @ > < 注 > < 注 > ... 注