Friday, July 24, 2015

@ Toulouse, France

9th International Conference on Urban Climate

12th Symposium on the Urban Environment

UDC6: Energy demand at city scale

Sensitivity of electricity consumption to air temperature, air humidity and solar radiation in city-block scale

Based on 2013 Osaka city observation —

Yuki Hashimoto¹, Tomohiko Ihara¹, Yukitaka Ohashi²,

Minako Nabeshima³, Yoshinori Shigeta⁴, Yoshihiro Kikegawa⁵

Graduate School of Frontier Sciences, The University of Tokyo
Faculty of Biosphere-Geosphere Science, Okayama University of Science
Graduate School of Engineering, Osaka City University
Faculty of Environmental Studies, Tottori University of Environmental Studies
Faculty of Science and Engineering, Meisei University

Relationship between electricity consumption and meteorological factors.

Variation of the meteorological elements affects electricity consumption.

→ Solar radiation also influences electricity consumption!

1. Ihara et al., Energy, 38(11), pp.1634–1645, 2008

Relation between electricity consumption and solar radiation

Quantification of relationship between electricity consumption and solar radiation

Observation items

Air temperature [°C], Relative humidity [%RH],

Air pressure [hPa] and Solar radiation [W/m²]

Observation period

2013/4/1 - 2014/3/17

Comparison of observed and calculated data

Relationship between $E_{obs.}$ - $E_{cal.}$ and solar radiation (SR) 2/3

6/13

Relationship between $E_{obs.}$ - $E_{cal.}$ and solar radiation (SR) 3/3

Sensitivity of electricity consumption to SR (illumination)

In residential areas,

- Sensitivities in the morning and evening were higher than that in daytime.
- \rightarrow <u>Occupancy rate is higher</u> in the morning and evening.

In office areas,

- Sensitivities were not significant by t-test all the time.
- \rightarrow Lights are on even if it is sunny.

9/13

Sensitivity of electricity consumption to SR (space heating)

In residential areas, Note: Marker is statistical significant (P < 0.1)

- Sensitivities in the morning and evening only were significant by *t*-test.
- \rightarrow <u>Air temperature</u> in the morning and evening <u>is more sensitive</u> to heat of solar radiation.

In office areas,

- Sensitivities were not significant by *t*-test all the time.
- \rightarrow Range of human activity is more distant from the envelop of a building.

10/13

Note: Marker is statistical significant (P < 0.1)

In residential areas,

- Sensitivities from 9am to 7pm were significant by *t*-test.
- \rightarrow Due to heat of solar radiation, buildings become warm, so cooling demand increases.

Comparison of the new model to the previous model

The residential area is more affected by solar radiation than the office area.

This is because

- Lighting in the residential area is turned on or off according to brightness.
- Range of human activity is close to the envelop of a building.

Conclusion and further application

- We developed the new model in consideration of solar radiation which affects lighting, heating and cooling effects.
- In residential areas, a term of lighting demand in sensitivities in the morning and evening were higher that in daytime due to occupancy rate. Also, a term of heating demand in sensitivities in the morning and evening only were significant by *t*-test due to lower air temperature.
- In office areas, sensitivities to solar radiation were not significant by t-test all the time because lights are on even if it is sunny and range of human activity is not close to the envelop of a building.
- The new model is better than the previous model in the residential area.

Further applications:

If Japan introduces daylight saving time,

- how will lighting demand decrease?
- how will cooling demand decrease?

Derived sensitivities were useful for validation of the numerical simulation model

The new model is the best solution for these applications!

Data and area 2/2

Meteorological instruments

Global solar radiation

CMP3 (PREDE Co..Ltd.)

Air temperature and humidity

TR-72U (T&D Co..Ltd.)

Electricity consumption data

We received it from Kansai Electric Power Company (KEPCO).

- Hourly
- Unit : MWh

Electricity demand in a household

Climate in Japan

Source by Japan meteorological agency

Standard Illuminance in Japan

Algorithm of this model

