ICUC9, Friday, 24/Jul/2015, Toulouse, France

Comprehensive validation of a simulation system for simultaneous prediction of urban climate and building energy demand

Osaka City (population 2.7M)

Yukihiro Kikegawa

(Meisei University, Tokyo, Japan)

Yukitaka Ohashi (Okayama Univ. of Science), Tomohiko Ihara (the University of Tokyo), Minako Nabeshima (Osaka City University), Yoshinori Shigeta (Tottori University of Environmental Studies)

Background & Purpose

Progress in Urban Climate Modelling

Heterogeneous LULC & surface geometry, and those parameterizations

Slab models (1990s) UCPs (Urban Canopy Parameterizations) with CFD (2000s-)

Models (WRF-CM-BEM, Kikegawa et al., TAAC, 2014)

Two-way coupling of CM-BEM with WRF

Yearlong field campaign in Osaka (FY 2013) 1/2

In 15 urban areas, at a couple of rooftop and ground sites in each area.

Yearlong field campaign in Osaka (FY 2013) 2/2

Period: March 2013 – March 2014

> Meteorological Measurements

- Rooftop level (3 to 5- storey school buildings) temp., humid., atmos. pressure (every 10 min.) S \downarrow global irradiance , L \downarrow (every 5 min.)
- Ground level (at 2.5m, open space near rooftop sites) temp., humid. (every 10 min.)

Electricity demand monitoring

Areal & hourly electricity demand monitored at 13 distribute substation each located in 13 observation areas with horizonet dimensions of 500 m to 2 km square each (except M2 & R3 areas)

Electricity demand data BEM validation

Meteorological elements CM validation (ex. temp. in UCL)

S \downarrow **global irradiance** \implies **WRF validation** (S) & its spatial inhomogeneity) Potential in the prediction of PV power generation in urban area?

Results 1/4 (Observed intraurban inhomogeneity in S \downarrow)

Period: 14 March 2013 – 17 March 2014 (0800 – 1600 LST)

Unbiased Root Mean Square Deviation = $\pm 1\sigma$ of $6(9 \beta \epsilon^{2})$

Statistical characteristics of $S\downarrow$ inhomogeneity in Osaka were quantified based on the measurements to be used for the model validation.

Intraurban spatial inhomogeneity in S↓ becomes larger on lightly & partly cloudy days than that on sunny & overcast days maybe due to partly cloud cover in the sky, showing reasonable dependency on distances between each site and reference site (larger unbiased RMSD & MAPD at more distant sites).

Preliminary Results 2/4 (Simulated intraurban inhomogeneity in S \downarrow)

> Period: Jul. 2013 – Aug. 2013 (0700 - 1700 LST) Summer

> Simulation: $\Delta x, \Delta y = 1$ km, Cloud Microphysics = Thompson et al. scheme

However, overall statistical features of S↓ inhomogeneity seem to be roughly reproducible by WRF-CM-BEM so far, suggesting a potential of its application to detailed-evaluation of photovoltaic power generation in urban areas.

Preliminary Results 3/4 (Simulated air temperatures)

Period: 0000 LST 30 July - 0000 LST 12 August 2013 (13 days)

RMSE :Root-Mean-Square Error MAPE: Mean Absolute Percentage Error

WRF-CM-BEM shows good performance in terms of reproducibility of the near-surface urban climatology over Osaka in summer so far, compared with the result in recent investigation which used UCP-BEM model.

Preliminary Results 4/4 (Simulated electricity demand)

Period: 30 July - 12 August 2013 (results on 9 weekdays in C2 & R7)

Possible causes

- 1. Changes in human behavior after 2011 disaster (about 20% energy-saving, but not yet considered in the simulation)
- 2. Less realistic settings of BEM parameters? (building materials, HVAC, etc.)

Conclusions & Ongoing works

- The original system for the simulation of the interaction between building energy demand and urban climate, named WRF-CM-BEM, is used.
- To substantiate the system performance, yearlong field campaign was conducted in Osaka city. Multi-site measurements on UCL climatology and areal electricity demand have been obtained for the model validation.
- Statistical characteristics of Intraurban spatial inhomogeneity in observed S are being quantified with significant site-by-site fluctuations. WRF-CM-BEM seems to be able to roughly reproduce those observed S inhomogeneities suggesting its potential application to evaluation of PV power generation.
- Preliminary analyses suggest promising performance of WRF-CM-BEM so far, in terms of reproducibility of the near-surface air temperature and areal building electricity demand but with a certain overestimation on the latter.
- Further validations are being carried out using yearlong measurements to clarify the ability of WRF-CM-BEM in coupling simulation of urban climate and building electricity demand.