

AMA 2016

Modélisation et caractérisation des aérosols marins pendant la campagne ChArMEx-ADRIMED

Marine Claeys¹, Marc Mallet², Greg Roberts^{1,3}, Pierre Tulet⁴

1: CNRM-GAME, Toulouse

2 : Laboratoire d'Aérologie, Toulouse

3: Scripps Institution of Oceanography, San Diego

4 : LaCy, Saint-Denis, La Réunion

Contexte

- Campagne ChArMEx-ADRIMED : Impact des aérosols sur le bilan radiatif et le climat du bassin Méditerranéen
- Région caractérisée par la présence de différents types d'aérosols dont les aérosols marins
 - Impact sur bilan radiatif de la région effets directs SW & LW
 CCN → influence les propriétés des nuages
- Aérosols marins → espèce particulaire important à bien représenter dans la modélisation de l'effet radiatif des aérosols sur le bassin Méditerranéen

Objectifs

- Améliorer le schéma d'émission des aérosols marins primaires dans le modèle Méso-NH
- Evaluer la nouvelle paramétrisation avec les mesures expérimentales
- Etudier les effets radiatifs directs (SW et LW) des aérosols marins primaires

Plan

- Présentation du site de mesure d'Ersa et du cas d'étude
- Présentation du modèle et des paramétrisations d'émission des aérosols marins
- Premiers résultats d'évaluation de la paramétrisation

Station de mesure Ersa

Instruments de mesure:

Concentration (nombres et masse) en particules d'aérosols

Granulométrie complète (fin et grossiers) des aérosols

Composition chimique des aérosols

Propriétés optiques

Campagne de mesure ADRIMED Juin / Juillet 2013

Episode de sels marins Données in-situ d'Ersa

Choix d'un cas de simulation pour l'évaluation de la paramétrisation

22-26 juin

Mesures in situ:

- → Concentration en sels atteint 6 µg/m³
- → Concentration en sels
- > 30 % masse (PM10)

Période caractérisée par des concentrations significatives en sels marins et adaptée aux objectifs de cette étude → Simulation MNH

Processus de génération des aérosols marins complexe

Déferiement

Couverture moutonneuse (Whitecap)

Particules > 10 µm Vent > 8-10 ms⁻¹

d. Film drops f. Jet drops $R < 1 \mu m$ $R > 1 \mu m$

La formation d'aérosols marins dépend principalement de la vitesse du vent Mais aussi influence de la SST, salinité, état de la mer

Ovadnevaite et al., 2014

Dépendance de la SST sur Flux d'émissions Comparaison de 2 paramétrisations

SST / → F /

Anciens schémas MNH

Schulz et Vignati

Vignati et al., 2001 3 modes R= 0.2, 2, 12 µm F(Vitesse du vent) Schulz et al., 2004 3 modes R= 0.14, 1.13, 7.66 μ m F(Vitesse du vent) Tables

nconvénients :

- Ne prennent en compte que le vent à la surface
- → Effets de la SST et de la hauteur des vagues négligés
- Spectre dimensionnel ne prend pas en compte les plus petites particules

Nouvelle paramétrisation

Ovadnevaite et al., 2014

- Exprimée en fonction de Re, nombre de Reynolds
- Fonction (Hvagues, Wspeed, Salinité, SST)
- **5 modes** lognormaux (3nm < D_{sec} < 6µm) qui ont chacun une **dépendance différente** à ces paramètres
 - Définis à partir de mesures expérimentales (in situ & campagne Atlantique Nord)
- Primaires inorganiques (NaCl)

Pourquoi cette paramétrisation?

- Possible prise en compte de l'état de la mer
- Spectre granulométrique plus complet (submicroniques et supermicroniques)
 - → Amélioration de l'estimation des effets radiatifs directs (SW et LW) et indirects (CCN)
- Anticipation pour les futures modèles à haute résolution couplés

$$Re_{Hw}=u_*H_s/v_w$$

Ovadnevaite et al., 2014

Flux d'émission en fonction de la taille des aérosols marins

1ère simulation sur un cas d'étude 12 → 27 Juin 2013

Campagne ChArMEx-ADRIMED Juin 2013

- Site de mesure au Cap Corse : 4 jours avec concentration en NaCl importante : > 40 % de la masse des PM10 : 22-26 juin
- Bassin Méditerranéen : Δx=15 km (300 * 400 mailles)
 - 64 niveaux verticaux : 30 en dessous de 1000m, 1^{et} à 10m
- SALT et DUST activés, schéma ORILAM (Tulet et al., 2005)
 - 1 moment : Seule la concentration varie(Ecart-type et rayon median des modes lognormaux fixes)

Forçage

Atmosphérique aux limites : toutes les 6h :

Analyses ECMWF: 0,125°

 Reanalyses ERA-Interim pour hauteur significative des vagues 1,125° → Domaine complet

Domaine Méditerranéen

Météorologie (T [K])
Concentration en masse et

nombre des aérosols marins

Résultats simulation Température modèle et observation

Station de mesure d'Ersa

Domaine 15 km x 15km Station proche de la côte → Effet de la mer

Lissage des températures par rapport aux observations : cycle diurne moins marqué

A partir du 23/06 : Biais chaud par rapport aux observations

Effet de la résolution horizontale sur le température : $\Delta x=15 \text{ km}$, $\Delta x=3 \text{ km}$, $\Delta x=0.5 \text{ km}$

→ amplitude journalière $\Delta x(3 \text{ km}) = \Delta x(0.5 \text{ km}) \sim 2 \times \Delta x(15 \text{ km})$

Perspective: Seconde simulation utilisant une résolution horizontale plus fine (domaines imbriqués)

Concentration en masse des aérosols marins

Situations météorologiques différentes pour les 2 maxima observés

Concentration en masse des aérosols marins

2 pics de concentrations mesurés par le PILS-IC
 - Bonne représentation temporelle des évènements de sels

20/06: Durée, amplitude et variations bien représentées *Biais* = 0.62 / Corr = 0.62

24/06 : Durée de l'évènement trop courte dans la simulation.

Amplitude sous estimée par le modèle

→ Possible dérive de la météorologie

Biais = -3.36 / Corr = 0.39

Contribution faible des 3 premiers modes Contribution importante du 5e mode à la concentration massique des aérosols marins

r1	r2	r3	r4	r5	
9 nm	20.5 nm	45 nm	115 nm	425 nm	
					/ ,

Concentration en nombre des aérosols marins

45 nm

115 nm

425 nm

9 nm

20.5 nm

OPS: Concentration en nombre des aérosols de 300 nm → 10 μm

Concentration totale

19 juin :

Biais négatif important Contribution possible des poussières désertiques

24 juin :

Concentration en nombre cohérente avec les observations pour une courte durée

Contribution des modes

Modes 1, 3 et 4 dominants

- → Mode 4 : Mode d'accumulation
- → Impacts radiatifs dans SW

Conclusion / Perspectives

Implémentation d'un nouveau schéma d'émission des aérosols marins primaires dans Méso-NH (Ovadnevaite et al., 2014)

- → Evaluation de cette paramétrisation à l'aide des observations de la campagne ChArMEx-ADRIMED
 - Evaluation de la concentration en masse et en nombre des aérosols marins
 - → 1er cas (20/06) relativement bien simulé mais sous-estimation pour le second (24/06)
 - Evaluation de la distribution en masse & des propriétés optiques

1ère simulation : 1 domaine à 15km de résolution horizontale

- → 2 domaines imbriqués de 3km et 500m de résolution horizontale
 2ème simulation : cas observé lors de la campagne de mesure SAFMED+
 - Cas de mistral fort
 - Test sur le couplage Océan- Atmosphère (collaboration laCy)
 - Etude de l'impact radiatif direct des aérosols marins

