Couplages climatologiques entre bilan énergétique de surface et météorologie au Sahel des diagnostics physiques intégraux pour évaluer et guider la modélisation

F. Guichard¹

1: CNRM, Toulouse 2: GET, OMP, Toulouse

L. Kergoat², J. Barbier¹, D. Bouniol¹, F. Couvreux¹, R. Roehrig¹

Contexte Sahélien: Mousson, surface et basses couches atmosphériques

Sahel: Bande climatique semi-aride, 10-12°N à 18-20°N qui s'étend d'ouest sur le continent africain sous l'influence de la mousson

Le flux de mousson se développe dans les basses couches atmosphériques (quelques centaines de m à quelques km) qui sont fortement contrôlées par le bilan énergétique à la surface

Les processus de surface : éléments majeurs du climat et de la mousson ouest-africaine

Charney (1975): désertification, albedo de surface , diminution des précipitations, subsidence boucle de rétroaction batie sur les changements du bilan énergétique local à la surface
Gong & Eltahir (1996): importance des gradients méridionaux de la thermodynamique des basses couches atmosphériques sur la circulation de mousson

L'existence de nombreux mécanismes opérant à des échelles spatio-temporelles distinctes est théoriquement possible (*paléo, interannuel, diurne, mésoéchelle…*) une difficulté majeure est d'identifier leur existence effective

Jusqu'à récemment, peu d'observations pour aborder ces questions ; approches de modélisation académiques, très utiles mais il est souvent délicat d'interpréter et d'évaluer les résultats obtenus de manière trop littérale, définitive.

Les observations récentes - projet AMMA, données satellites - permettent maintenant d'identifier de manière plus solide des mécanismes opérant effectivement au Sahel - et par suite aussi d'évaluer les modèles et de guider leurs développements.

Données sol : échantillonnage du gradient climatique méridien

Par les sites de l'observatoire AMMA-CATCH (Lebel et al. 2009)

 T, RH, vent, pression, précipitation
flux radiatifs, H, LE, G
T & hum sol, + autres variables hydro et vég dt: 15 à 30 min , ~ 10 ans

données GPS (Bock et al. 2008) dt: 1h, qq années

Adapté de Frappart et al. (2008)

Complémentarité du transect AMMA et des sites locaux (CMIP5 cfSites)

AMMA TRANSECT: take advantage of the large-scale climatological gradient AMMA-MIP: Hourdin et al. (2010)

Bouniol et al. (2012)

CMIP5 cfSites

- locations where ground data available
- sample the gradient

• high frequency long term observations (valuable e.g. for diurnal cycle)

Guichard et al. (2009)

OBSERVATIONS : CYCLE ANNUEL DU RAYONNEMENT A LA SURFACE

Malgré l'importance accordée à ce bilan au Sahel, très peu analysé et utilisé pour évaluer la modélisation jusqu'à ces dernières années

Un bilan énergétique qui fait intervenir toute une série de processus <u>A la surface</u> : Tsol, humidité du sol et végétation <u>Dans l'atmosphere</u>: vapeur d'eau, nuages et aérosols (poussières désertiques)

Couplages entre bilans d'énergie et bilan d'eau (précipitation et vapeur d'eau)

De juin à septembre, l'augmentation de R^{net} est principalement pilotée par l'émission de la surface R^{up} (qui diminue)

Photo V. Le Dantec

decrease of surface albedo (vegetation, Samain

 R^{in} (movenne 10 jours) varie peu pendant la mousson (attention: l'impact radiatif des nuages & aérosols est non négligeable (SW incident JA: effet ~ 50 W/m², ~ 25%)

Fortes similarités avec les sites sahéliens du Niger (Slingo et al. 2009, Ramier et al. 2009)

Fluctuations temporelles couplées: exemple avril 2010

OBSERVATIONS : Couplages entre flux radiatifs LW et thermodynamique

LWup, LWdown, LWnet, RH, precipitable water et précipitation

Caractéristiques climatiques

Moyennes journalières (jan à dec)

LWnet: indicateur du (dé)couplage entre surface et atmosphere

P_{Icl} ~ RH2m

Variabilité interannuelle pendant la période de mousson

La variabilité interannuelle (courte) de Rnet est expliquée principalement par celle de LWup

OBSERVATIONS : Couplages entre flux radiatifs LW et thermodynamique DTR (diurnal temperature range), LWnet

MODELES : Cycle annuel du rayonnement à la surface

Simulations CMIP5 AMIP (~ 30 years)

Exemple au Sahel, Point cfSite Agoufou

- * R_{net} : biais > 0 (~50W/m²) au printemps
- * souvent plus de différences entre modèles et d'erreurs sur le flux solaire incident SW_{in} que sur R_{net}
- * R_{net} ~OK ne signifie pas que les flux sensibles et latents soient corrects ! (compensations d'erreurs)
- * Des différences importantes même en ciel clair (expliqué principalement par le traitement des aerosols)

De tels biais conduisent à des erreurs sur le bilan énérgétique et probablement sur la convection simulée (force, fréquence...)

Des biais importants dans les réanalyses météo également

Voir aussi Roehrig et al. (2013)

MODELES : flux radiatifs pendant la mousson

Agoufou cfSites point, core monsoon (Jul-Aug average)

(one tick=1 year, one color= one model, obs in black, 2 sites to sample range of precip amount and their differences in obs and models)

MODELES : Couplages flux radiatifs , précipitations

Agoufou cfSites point, core monsoon (Jul-Aug average)

Spread among model in simulated LWup strongly related to précipitation spread

Beyong mean differences, most models do not simulate an increase of Rnet with precipitation

MODELES : Couplages LW_{net} , P_{lcl}

des couplages dans les simulations CMIP5 comme dans les observations mais avec des différences quantitatives importantes conclusions similaires aux autres sites

MODELES : couplages LW_{in} ciel clair , eau precipitable

Joint PDF (precipitable water, surface LWin clear sky) CMIP5 amip runs (30 years), daily values at 2°E, 20.5°N

MODELES: couplages DTR , LWnet

 $DTR_{Rad} = -4\sigma T^3 / LW_{net}$

Couplage (DTR, Lwnet) dans les simulations climatiques également Mais souvent trop fort (en terme de pente de la relation)

MODELES: couplages pour 3 sites distincts

Les différences entre modèles sont semblables d'un site à l'autre

CONCLUSION

Analyse processus des données à la surface au Sahel

(bilans d'énergie, flux radiatif, météo) Données à haute fréquence temporelle sur plusieurs années

- * Amplitude forte du cycle annuel du bilan d'énergie au Sahel, contribution de processus distincts suivant la saison
- * Identification et quantification de couplages entre cycles de l'eau et de l'énergie (notamment via les couplages thermodynamique - flux rad LW)
- * des éléments diagnostics pour évaluer et guider la modélisation

Evaluation des simulations CMIP5, des ré-eanalyses

- * Erreurs très importantes sur les composants des flux radiative fluxes
- * Dispersion de flux SW, même en ciel clair (> 25 W .m-² moyennes qq mois)
- * Couplages dans les simulations comme dans les observation, mais accord qualitatif
- * Les biais des flux simulés ne s'expliquent pas uniquement par les biais de precipitation (albedo, nuages, aérosols)

Echelle synotique, composites bâtis à partir d'observation : e.g. autour des évènements de pluie (albedo, EF), Samain et al. (2008), Lohou et al. (2014)

Intérêt de ces types de diagnostics pour d'autres lieux, climats

adapted from Samain et al. (2008)

Documentation plus systématique de la variabilité méso-échelle

